

Prospectiva del sector eléctrico 2002-2011

Secretaría de Energía

Ernesto Martens Rebolledo Secretario de Energía

NICÉFORO GUERRERO REYNOSO Subsecretario de Electricidad

JUAN ANTONIO BARGÉS MESTRES
Subsecretario de Hidrocarburos

Francisco Barnés de Castro Subsecretario de Política Energética y Desarrollo Tecnológico

Ma. Fernanda Casanueva de Diego Oficial Mayor

> Armando Jiménez San Vicente Director General de Formulación de Política Energética

> > María Luisa Ríos Vargas Directora General de la Unidad de Comunicación Social

Dirección General de Formulación de Política Energética

Prospectiva del sector eléctrico 2002-2011

Responsables

Edición

Armando Jiménez San Vicente Director General de Formulación de Política Energética Alejandra Mota Márquez Directora de Difusión

Carlos Cortés Méndez Subdirector de Programación Sectorial Teresa Mira Hatch Subdirectora de Comunicación Gráfica

Héctor López Leal Coordinador de Prospectivas Adriana Castillo Rosales Jefa del Departamento de Diseño Gráfico

© Secretaría de Energía Primero edición, 2002

Derechos reservados. Se prohíbe la reproducción total y parcial de esta obra por cualquier método. Secretaría de Energía Insurgentes Sur 890 Col. del Valle CP 03100 México D.F. ISBN 968-874-177-9 Impreso en México www.energia.gob.mx

Agradecemos la participación de las siguientes entidades por sus aportaciones para elaborar esta Prospectiva

Comisión Federal de Electricidad
Comisión Nacional para el Ahorro de Energía
Comisión Reguladora de Energía
Instituto de Investigaciones Eléctricas
Luz y Fuerza del Centro
Pemex Corporativo
Pemex Gas y Petroquímica Básica
Pemex Refinación

ÍNDICE

11	RECONOCIMIENTO
13	Presentación
15	Introducción
17	RESUMEN EJECUTIVO
19	CAPÍTULO 1. PANORAMA INTERNACIONAL DEL MERCADO ELÉCTRICO
19	1.1 Evolución mundial de la demanda de energía eléctrica
20	1.2 Evolución de la intensidad en el consumo de energía eléctrica
22	1.3 Tendencia mundial en los mercados de combustibles para generación eléctrica
25	1.4 México en el contexto del mercado de energía eléctrica
29	CAPÍTULO 2. MARCO REGULATORIO EN LA INDUSTRIA ELÉCTRICA
30	2.1 Instrumentos de regulación
31	2.2 Características generales de la regulación para fuentes firmes
32	2.3 Características generales de la regulación para fuentes renovables
33	2.4 Participación privada en la industria eléctrica
34	2.5 Normas Oficiales Mexicanas en la industria eléctrica
37	CAPÍTULO 3. MERCADO ELÉCTRICO NACIONAL
38	3.1 Consumo nacional de electricidad
38	3.1.1 Ventas por sector del SEN
39	3.1.2 Ventas por región
40	3.1.3 Comportamiento de la demanda máxima, por área del SI
42	3.1.4 Evolución de los precios reales en la industria eléctrica
43	3.2 Comportamiento de la oferta
43	3.2.1 Sistema Eléctrico Nacional
49	3.2.2 Generación privada de energía eléctrica
51	3.2.3 Comercio exterior de energía eléctrica
52	3.2.4 Capacidad de transmisión del SEN

55	CAPÍTULO 4. PROSPECTIVA DEL SISTEMA ELÉCTRICO NACIONAL
56	4.1 Escenarios macroeconómicos y supuestos básicos
57	4.2 Pronóstico del consumo nacional de electricidad y de las ventas del sector público
59	4.2.1 Análisis del mercado regional de energía eléctrica
61	4.2.2 Demanda máxima por área operativa del SEN
61	4.3 Expansión del sistema eléctrico nacional
61	4.3.1 Capacidad de reserva
63	4.3.2 Programa de expansión 2002-2011
69 69	4.3.2.1 Participación de las tecnologías de generación en la expansión del SEN 4.3.3 Importación y exportación de energía eléctrica
70	4.3.4 Evolución esperada del sistema de generación
71	4.3.5 Evolución del consumo de combustibles en la industria eléctrica
72	4.3.6 Autoabastecimiento y cogeneración
75	4.3.7 Evolución de la red de transmisión
78	4.4 Requerimientos de inversión del Sector Eléctrico
79	4.5 Opciones técnicas para la expansión del sistema de generación
85	CAPÍTULO 5. AHORRO DE ENERGÍA Y FUENTES RENOVABLES
85	5.1 Programas de ahorro de energía eléctrica
85	5.1.1 Ahorro de energía por el lado de la demanda
89	5.1.2 Ahorro de energía por el lado de la oferta
90	5.2 Fuentes renovables de energía
90	5.2.1 Principales fuentes renovables de energía en México
91	5.2.2 Desarrollo y evolución de energía renovable en México
94	5.2.3 Actividades de investigación y desarrollo en fuentes renovables
97	ANEXOS
99	1. Propuesta de modernización del Sector Eléctrico
107	2. Glosario de términos
113	3. Abreviaturas
115	4. Documentos para la elaboración de la prospectiva
117	5. Referencias para la recepción de comentarios
119	Acciones de mejora continua

11

RECONOCIMIENTO

De conformidad con el Artículo 66 del Reglamento de la Ley del Servicio Público de Energía Eléctrica, la CFE presentó para aprobación de la Secretaría de Energía, un estudio elaborado en los términos de los Artículos del 66 al 68, en el que se integró el análisis de las tendencias del sector eléctrico, el programa de expansión del sistema y las perspectivas del mercado para los próximos 10 años. Este estudio sirvió de base para integrar los capítulos 3 y 4 de este documento de prospectiva de la Sener.

El capítulo cinco es una aportación de la Comisión Nacional para el Ahorro de la Energía, mientras que los primeros dos capítulos fueron elaborados por la Sener.

En los ejercicios de prospectiva del sector eléctrico, la Secretaría instituye y coordina las labores del Grupo Interinstitucional del Sector Energético, en el que participan todas las entidades del sector. Las aportaciones de cada una, son las que hacen posible llevar a término este ejercicio y cumplir lo que estipula el Artículo 69 del reglamento citado, asegurando la consistencia de los resultados que aquí se presentan, con los otros documentos de prospectiva que se publican por separado.

PRESENTACIÓN

La Sener realiza en la actualidad una política energética innovadora, consensuada y dinámica, que dará certidumbre y alentará las inversiones necesarias en la expansión del sistema eléctrico para los próximos años.

México necesita lograr un abasto suficiente y oportuno que de cobertura al crecimiento de la demanda de energía eléctrica. Para ello, se requiere de que las empresas e instituciones del sector, lleven a cabo su manejo, planeación y desarrollo con plena autonomía, dando respuesta a las necesidades de corto, mediano y largo plazo de cada tipo de usuario.

Para ello, se ha puesto a la consideración del Congreso de la Unión, una propuesta de modernización del Sector Eléctrico. Se trata de realizar cambios de carácter estructural que permitan dotar a la sociedad mexicana, de un fluido eléctrico en las mejores condiciones de calidad y precio.

La conveniencia de que el sector privado participe como complemento de la inversión del Gobierno Federal, permitirá que el sector disminuya su dependencia de los recursos públicos y éstos puedan dirigirse a otros sectores de asistencia social.

La propuesta busca establecer un marco jurídico y regulatorio eficiente y transparente que de certidumbre a los participantes en el sector. En este sentido, el documento de Prospectiva del Sector Eléctrico 2002-2011 permite prever con oportunidad los requerimientos necesarios para garantizar un suministro de energía eléctrica suficiente y eficiente. Siendo evidente la importancia de contar con infraestructura moderna, como un requisito decisivo para que el país pueda competir en mejores condiciones en los mercados internacionales.

Ernesto Martens R. Secretario de Energía

INTRODUCCIÓN

La prospectiva del sector eléctrico tiene el propósito fundamental de contribuir a garantizar la viabilidad del sector en el largo plazo, asegurando su conducción responsable y promoviendo su crecimiento sostenido y sustentable. En este ejercicio prospectivo se utilizó un escenario macroeconómico que supone un crecimiento medio anual en los próximos diez años de 4.5%, inferior al considerado en la prospectiva anterior (5.2%).

Esta prospectiva es el resultado de varias reuniones de trabajo entre las diferentes entidades y organismos del sector, cuyas aportaciones fueron integradas de manera clara y concisa.

En el primer capítulo se hace referencia a la posición de la infraestructura de generación de México en el entorno mundial y continental. El marco regulatorio de la industria eléctrica se presenta en el capítulo dos, que detalla los principales instrumentos legales y sus características para regular la participación privada en esta industria.

Las aportaciones de CFE y LFC al documento de prospectiva, han sido incorporadas en los capítulos tres y cuatro, que presentan la evolución presente y futura de la demanda y oferta de energía eléctrica. Finalmente, se muestran los principales programas de ahorro y uso eficiente de la energía, así como, las fuentes primarias para generación eléctrica.

Este documento es perfectible, motivo por el cual, la Secretaría de Energía invita a los interesados en el sector eléctrico nacional y al público en general, a enviar sus comentarios a las direcciones que aparecen en el *Anexo cinco* del documento, de tal forma que nos permita establecer un sistema de mejora continua para está publicación.

17

RESUMEN EJECUTIVO

México no es ajeno a las tendencias tecnológicas mundiales, por ello, la planeación del *Sistema Eléctrico Nacional* se basa en plantas de ciclo combinado.

En el capítulo uno de la prospectiva presenta la evolución del consumo neto mundial de energía eléctrica para el periodo 1999-2015, el cual se estima en 19,835 TWh al final del periodo, con una tasa promedio de crecimiento de 2.8% anual. Aunque se espera que las economías en desarrollo observen crecimientos superiores al promedio mundial de 4.3%.

En relación a la tendencia mundial en el consumo global de energéticos utilizados en generación eléctrica, el gas natural predominará en los siguientes años con un incremento medio de 4.0% anual. Los países en desarrollo presentan un crecimiento en el consumo de gas de 5.8%, superior a la media mundial.

México ocupó el cuarto lugar en el continente, respecto a la capacidad instalada observada en el 2000. Por empresa, la capacidad efectiva de la CFE en este año, la ubicó dentro de las principales seis más grandes del mundo en igual año.

El actual marco regulatorio para fuentes firmes y renovables de energía eléctrica, expone claramente las reglas a los participantes en el sector eléctrico. Principalmente la modalidad de Producción Independiente de Energía aporta 44% de la capacidad autorizada de los permisos otorgados por la CRE.

Los capítulos tres y cuatro presentan la evolución histórica y futura del Sector Eléctrico Nacional (SEN). Donde se observa un crecimiento del consumo de energía eléctrica de 5.1% en las dos últimas décadas, mientras que la economía sólo aumenta en 2.2%. Los sectores más dinámicos en el crecimiento de las ventas totales de electricidad, son el residencial y el in-

dustrial (ambos consumen el 84% del total). Para los próximos diez años, las ventas internas de electricidad se incrementarán 5.4% en promedio anual.

Para satisfacer este crecimiento de la demanda, será necesario adicionar capacidad por 28,862 MW del servicio público y 1,438 MW en proyectos de autogeneración, lo que significa un total de 30,300 MW adicionales que deberán ser incorporados al SEN durante el periodo 2002-2011. Del programa total de expansión, 47% son proyectos comprometidos y 48% son obras no comprometidas que representan un área de oportunidad para la participación privada en los proyectos de generación.

Destaca la entrada en operación de siete proyectos de generación de producción independiente de energía, durante el 2001 y el tercer trimestre del 2002, con una capacidad de 2,637 MW, con lo cual se fortalece esta modalidad de participación privada en la industria eléctrica. Se espera que al año 2011 la participación de las centrales de ciclo combinado en el total de la capacidad adicional será de cerca de 75% (considerando las tecnologías libres en esta categoría).

Por lo anterior, el consumo de gas natural para generación eléctrica del servicio público se incrementará en 12.1% en promedio anual durante los próximos diez años. Mientras que el consumo de combustóleo y diesel disminuirán su crecimiento de acuerdo con el programa de expansión previsto hasta el 2011.

Para cubrir los requerimientos de capacidad de generación que satisfagan la demanda, la inversión necesaria para ampliar la infraestructura del SEN, será de 586 mil millones de pesos en el periodo 2002-2011. Al final del horizonte del periodo de estudio, se estima que el 53% sea realizada por inversionistas privados.

Los principales programas de ahorro y uso eficiente de energía se consideran en el capítulo cinco. La Comisión Nacional para el Ahorro de la Energía estima que el potencial de ahorro factible con las estrategias aplicadas actualmente, es equivalente a un consumo evitado de 20% de las ventas totales estimadas del servicio público.

Con la aplicación de los programas de ahorro de energía eléctrica, se espera que en el 2011, se ahorren 34,021 GWh que significaría 12.2% de las ventas totales proyectadas para el servicio público en ese año.

Las fuentes renovables maduras en México son la hidroelectricidad y la geotermia que aportan el 27% de la capacidad instalada total y 17.1% de la generación del SEN.

capítulo uno

PANORAMA INTERNACIONAL DEL MERCADO ELÉCTRICO

Las actuales tendencias energéticas mundiales consideran la globalización y desregulación de mercados, la consolidación corporativa y convergencia de líneas de negocio, así como la comercialización de infraestructura. Principalmente se están reestructurando los sectores eléctricos tradicionales, con diferentes matices en su aplicación, a fin de establecer mercados eficientes con una reducción de costos y mayor la calidad del servicio.

Este capítulo presenta un panorama de la industria eléctrica mundial y la ubicación de México dentro de este contexto. Incluye información seleccionada de la Administración de Información de Energía (EIA), Agencia Internacional de Energía (IEA) de la OCDE, el Departamento de Energía de EUA (DOE) y la Organización Latinoamericana de Energía (OLADE), sobre los mercados regionales de combustibles utilizados en la generación de energía eléctrica y del crecimiento de la demanda eléctrica.

1.1 Evolución mundial de la demanda de energía eléctrica

Se estima que durante el periodo de 1999 a 2015 el consumo neto mundial de electricidad aumente en 2.8% promedio anual, al pasar de 12,833 TWh a 19,835 TWh, respectivamente (cuadro 1).

Debido al ascendente crecimiento poblacional, al acelerado proceso de industrialización y a la creciente cobertura de electrificación, se espera que las economías en desarrollo observen un mayor incremento en el consumo de electricidad (especialmente los países Asiáticos), al registrar 4.3% promedio anual en el periodo de análisis. En general, la participación en el consumo neto mundial de electricidad de las naciones en desarrollo se incrementará de 30.1% a 38.0% en el periodo considerado.

En los países industrializados se observa un aumento moderado en el consumo de electricidad de 2.0% anual, derivado de un menor crecimiento demográfico y económico, con respecto al que se observa en los países en desarrollo. Esto también se atribuye, en términos, generales a una mayor eficiencia en el uso de la energía y a la madurez que han alcanzado sus mercados. Crecimiento similar al que se espera en los EUA de 2.2%.

En las regiones de Centro y Sudamérica se proyecta un crecimiento conjunto de 3.9% promedio anual, ya que el consumo aumentará de 684 TWh en 1999 a 1,517 en el 2020. Esta proyección se sustenta en crecimientos ascendentes en las economías de la región y en mejores niveles de vida, lo cual se traduce en aumentos importantes en la demanda de energía eléctrica.

Durante el periodo comprendido de 1980 a 1999, el mayor consumo por habitante y por región se observó en Norteamérica con 10,832 KWh/habitante al final del periodo. Esta cifra es siete veces mayor, que la correspondiente a América Latina y es casi el doble respecto a las naciones de Europa pertenecientes a la OCDE, (gráfica 1).

En las naciones industrializadas de la OCDE, la elasticidad ingreso de la demanda de energía eléctrica (sensibilidad de la demanda por cambios en el ingreso) registró un valor de 2% a mitad de la década de los 70, reduciéndose a 1.2% en la década de los 90.

Cuadro 1 Consumo neto de energia eléctrica por región, 1990-2015 Terawatts-hora

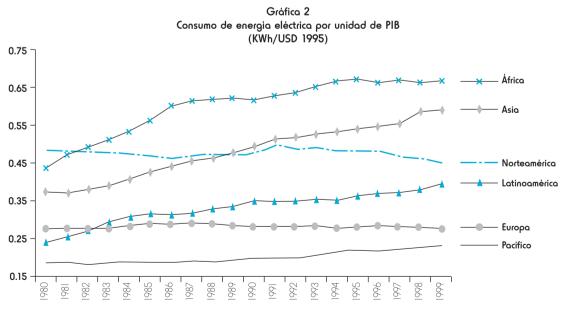
	Históricos		Proyectados			
Región	1990	1999	2005	2010	2015	tmca 1999-2015
Total mundial	10,549	12,833	15,182	17,380	19,835	2.8
Países industrializados	6,385	7,517	8,620	9,446	10,281	2.0
Estados Unidos de América	2,817	3,236	3,793	4,170	4,556	2.2
Europa oriental / ex-Unión Soviética	1,906	1,452	1,651	1,807	2,006	2.0
Países en desarrollo	2,258	3,863	4,912	6,127	7,548	4.3
Asiáticos	1,259	2,319	3,092	3,900	4,819	4.7
China	551	1,084	1,523	2,031	2,631	5.7
India	257	424	537	649	784	3.9
Corea del sur	93	233	309	348	392	3.3
Otros	357	578	724	872	1,012	3.6
Centro y Sudamérica	449	684	788	988	1,249	3.8
Otras regiones	550	860	1,032	1,239	1,480	3.5

Fuente: Energy Information Administration / International Energy Outlook 2002

tmca = tasa media de crecimiento anual

1.2 Evolución de la intensidad en el consumo de energía eléctrica

En términos generales, se observa un mayor consumo de electricidad por habitante en países industrializados como Canadá y EUA. Los cuales registraron en 1999, 16,571 y 13,451 KWh/habitante, respectivamente. Estos niveles de consumo per cápita son superiores al promedio de los países miembros de la Organización para la Cooperación y el Desarrollo Económico (OCDE) con 7,841 KWh/habitante.


Se espera que en los próximos años este indicador será cercano o menor a la unidad para estos países. Debido a que los altos precios relativos de los energéticos han inducido a la implementación de programas de desarrollo tecnológico y de conservación de la energía eléctrica.

Gráfica 1 Regiones con mayor consumo de energía eléctrica per cápita (KWh/habitante) 12,000 Norteomérico 10,000 8,000 Pacífico 6,000 Ευιορα 4.000 Ex-URSS Europa no-OCDE 2.000 Latinoamérica 0

Nota: Las regiones de norteamérica, pacífico y europa contienen países de la OCDE. México se encuentra incluido en la región de norteamérica. Fuente: International Energy Agency. Energy Balances of OECD countries & Energy Balances of non OECD countries, 1998-1999.

En el caso de las naciones en desarrollo de América Latina y Asia, la elasticidad ingreso de la demanda se mantiene constante en aproximadamente un punto porcentual, a lo largo del periodo 1971-1999. La razón es que sus economías se encuentran en proceso de industrialización y el servicio de energía eléctrica se extendió a la mayor parte de la población.

Como puede observarse en la gráfica 2, la eficiencia en el consumo de electricidad por región es sobresaliente en Norteamérica y Europa, donde la intensidad en el consumo de energía eléctrica disminuye, desde principios de los noventas derivado de políticas de conservación y uso eficiente de la energía eléctrica.

Nota: Las regiones de norteamérica, pacífico y europa contienen países de la OCDE. México se encuentra incluido en la región de norteamérica. Fuente: International Energy Agency: Energy Balances of OECD countries & Energy Balances of non OECD countries, 1998-1999.

Por el contrario, en las naciones en desarrollo de Asia, África y Latinoamérica, se observa un comportamiento ascendente en el consumo de electricidad, debido a un proceso de industrialización creciente de finales de los 80 y hasta el término de los 90.

1.3 Tendencia mundial en los mercados de combustibles para generación eléctrica

Los pronósticos indican que el carbón se mantendrá como el principal energético para generar electricidad en el mundo, ya que durante el periodo 1999 - 2015 tiene la mayor participación en el total (entre 36% y 32%). Se pronostica que su consumo observará un crecimiento promedio anual de 1.4%.

Las tendencias mundiales recientes en la industria eléctrica, indican que el gas natural se convertirá en el combustible con un mayor dinamismo en sus niveles de utilización. Esto se atribuye básicamente a la implementación de políticas ambientales y desarrollos tecnológicos de mayor eficiencia. Se estima que el consumo de este combustible casi se duplique, al incrementarse de 29,542 PJ en 1999 a 54,968 PJ al final del horizonte de estudio.

En contraste, los derivados del petróleo (principalmente combustóleo y diesel), mantienen constante su participación entre 9.5% y 9.0% dentro del consumo global de energéticos utilizados en la generación eléctrica, a lo largo del periodo de proyección.

Cuadro 2

Consumo mundial de energéticos utilizados en la generación de electricidad

Petajoules (PJ)

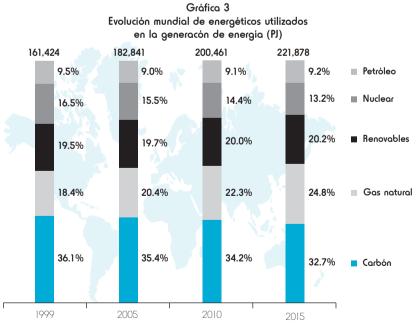
	Histo	óricos	Pro	yectados		
Región						tmca
	1990	1999	2005	2010	2015	1999-2015
Total	149,606.9	161,423.6	182,841.2	200,460.6	221,878.3	2.0%
petróleo	14,348.8	15,403.8	16,458.9	18,147.0	20,468.1	1.8%
gas natural	26,481.9	29,541.6	37,243.5	44,734.4	54,968.4	4.0%
carbón	54,757.4	58,344.6	64,674.9	68,578.6	72,482.3	1.4%
nuclear	24,582.8	26,587.4	28,381.0	28,908.5	29,225.1	0.6%
renovables	29,436.1	31,546.2	36,082.9	40,092.1	44,734.4	2.2%
Países industrializados	81,450.3	88,308.2	96,537.6	102,762.5	110,147.8	1.4%
petróleo	6,013.8	6,857.9	5,908.3	5,908.3	6,330.3	-0.5%
gas natural	10,234.0	12,238.6	16,458.9	19,096.5	24,055.3	4.3%
carbón	29,225.1	31,229.7	34,078.3	35,977.4	36,927.0	1.1%
nuclear	20,468.1	21,734.2	22,261.7	22,261.7	21,945.2	0.1%
renovables	15,509.3	16,247.9	17,830.4	19,518.5	20,890.1	1.6%
Ex Unión Soviética	27,853.5	25,110.3	27,748.0	28,908.5	30,913.1	1.3%
petróleo	2,954.2	2,532.1	3,376.2	3,903.7	4,642.2	3.9%
gas natural	11,183.6	10,867.1	11,816.6	13,188.2	14,981.8	2.0%
carbón	7,807.4	5,697.3	5,802.8	5,064.3	4,220.2	-1.9%
nuclear	2,637.6	2,848.7	3,376.2	3,165.2	3,165.2	0.7%
renovables	3,270.7	3,165.2	3,376.2	3,587.2	3,903.7	1.3%
Países en desarrollo	40,303.1	48,005.0	58,555.6	68,789.7	80,817.3	3.3%
petróleo	5,380.8	6,013.8	7,174.4	8,334.9	9,495.5	2.9%
gas natural	5,064.3	6,435.8	8,968.0	12,449.7	15,931.3	5.8%
carbón	17,724.9	21,417.6	24,793.8	27,537.0	31,335.2	2.4%
nuclear	1,477.1	2,004.6	2,743.1	3,481.7	4,114.7	4.6%
renovables	10,656.1	12,133.1	14,876.3	16,986.4	19,940.6	3.2%

Fuente: Energy Information Administration / International Energy Outlook 2002

La generación hidráulica y de otras fuentes renovables (solar, eólica y biomasa) se proyecta que mantenga su participación en el total en 20%, durante el periodo de análisis. Sin embargo, estas tecnologías en el periodo de 1999 al 2015, se incrementan en 40%.

Respecto a la generación nucleoeléctrica, después de haber observado un rápido crecimiento en la década de los setentas y mitad de los ochentas, se espera que disminuya su participación en el mercado mundial de electricidad, debido a que no se tienen previstos reemplazos de los reactores actuales en las naciones industrializadas.

Gas natural


A pesar de la incertidumbre en los mercados de electricidad, provocada por la volatilidad en el precio del gas natural de principios del 2001, se pronostica un crecimiento promedio anual del 4.0%, el doble del promedio anual del consumo de energéticos para generación eléctrica.

La tendencia actual en los mercados de energía eléctrica, manifiesta una mayor utilización de turbinas de gas natural, debido a los bajos costos de inversión, los menores tiempos de construcción, utiliza un combustible ambientalmente limpio y presenta mayores eficiencias de operación respecto a otras tecnologías.

En Norteamérica, se pronostica un crecimiento rápido en el consumo del combustible para generar electricidad. En EUA se espera que su participación en el total se duplique de 15% en 1999 a 32% en los próximos 20 años. Canadá por su parte, registrará un dinamismo superior, incrementando su participación de 3% a 11%.

En Centro y Sudamérica el gas natural participó con 11% en 1999, respecto al total del mercado de combustible para generar electricidad, y se prevé que aumente su participación a 32% en las próximas dos décadas. La hidroelectricidad es la principal fuente de generación eléctrica en Sudamérica. Sin embargo, los elevados costos asociados a problemas ambientales y climatológicos, ha propiciado que los gobiernos de la región identifiquen al gas natural como un elemento fundamental para diversificar sus fuentes de generación. En está región están en desarrollo la infraestructura de gasoductos transcontinental, la cual transportará el combustible desde Argentina y Bolivia hasta Chile y Brasil.

A principios de los 90, la creciente disponibilidad de reservas de hidrocarburos en el Mar del Norte y el aumento en las importaciones provenientes de Rusia y África del Norte, terminaron con la incertidumbre acerca de la oferta de gas natural en Europa. Por lo cual se prevé un consumo mayor de gas natural en estas naciones para los próximos años.

Fuente: Energy Information Administration / International Energy Outlook 2002

Carbón

Se espera que en el 2015 el carbón contribuya con el 33% del mercado mundial de combustibles para electricidad, cifra inferior a la observada en 1999. Sin embargo, seguirá siendo el principal combustible empleado para generar electricidad. Proyecciones del Departamento de Energía de los Estados Unidos de América (DOE) indican que la participación de su consumo de carbón para generación eléctrica pasará de 51% en 1999 a 46% en los siguientes 20 años.

Se estima que el consumo de carbón para generación disminuya sensiblemente en otras regiones del mundo, tal es el caso de las naciones de Europa Oriental y en la ex Unión Soviética, donde su participación en el mercado de combustibles pasará de 23% en 1999 a 11% en las siguientes dos décadas. En las naciones de Europa Occidental, la participación de este combustible disminuirá de 23% a 15%, respectivamente.

Nuclear

Esta tecnología tiene el menor incremento en el consumo mundial de energéticos para generación eléctrica; se prevé que crecerá medio punto porcentual durante el periodo 1999-2015 y se espera que la capacidad mundial de esta tecnología disminuirá su participación en muchas regiones del mundo (pasará de 16.5% a 12.2%). Lo anterior es resultado de la creciente preocupación en la seguridad de operación en estas plantas, la disposición de desechos radiactivos y de factores económicos.

En EUA se pronostica una disminución de la generación nuclear en el mercado de combustibles para electricidad: pasará de 20% en el 1999 a 13% en los siguientes 20 años. En Canadá, la participación de esta tecnología viene reduciéndose desde 1984 y se estima que mantendrá una participación estable en 14% a lo largo del periodo de análisis.

En Europa Occidental se presentará la mayor reducción de energía nuclear para generación eléctrica, de 35% en 1999 a 24% en los próximos 20 años. Solamente Finlandia y Francia, continuarán con planes de expansión de la capacidad eléctrica con esta tecnología.

Japón seguirá expandiendo su capacidad de generación con energía nuclear, pues se pronostica aumente su participación de 33% en 1999 a 37% al término del periodo. Los países en desarrollo de Asia, desempeñarán un papel más dinámico en la generación eléctrica con está tecnología. China, India, Pakistán, Corea del Sur y Taiwán cuentan con programas para adicionar capacidad con energía nuclear.

Hidroelectricidad y otras fuentes renovables

Se proyecta que la energía renovable mantendrá constante su participación en 20% de la generación eléctrica utilizada mundialmente. En 1999, del consumo mundial de energía renovable para generación de energía eléctrica, EUA y Canadá aportaron conjuntamente 26% del total, Europa Occidental 19% al igual que Centro y Sudamérica.

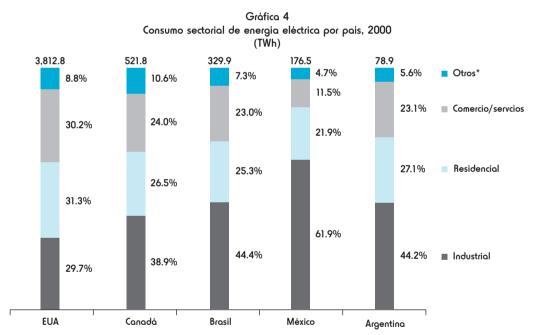
En el ámbito mundial, se espera que las tecnologías renovables no hidráulicas sean más competitivas durante el periodo de análisis, aunque seguirán siendo relativamente costosas. En 1999, la participación de las fuentes renovables en EUA fue de 11% de la electricidad producida, mientras que en Canadá representaron 62%.

Durante 1999, las tecnologías renovables en Centro y Sudamérica aportaron 75% del mercado de generación de electricidad en esta región, siendo su principal fuente la hidráulica. Como resultado de la diversificación de combustibles para generar electricidad, en los próximos 20 años se espera que las fuentes renovables reduzcan su participación a 55%.

En los países de Europa Occidental la mayor parte de la energía renovable utilizada es hidroeléctrica. Al inicio del periodo, las fuentes renovables en esta área, aportaron 22% de la generación eléctrica, y se espera aumente a 26% en las siguientes dos décadas. Algunas naciones europeas, principalmente Alemania, España y Dinamarca, desarrollan otras fuentes renovables, en especial la eólica.

Sobresalen los proyectos hidroeléctricos en Asia, que en conjunto adicionarán una capacidad de 18,200 MW, la cual se espera entre en operación comercial durante el periodo de estudio, especialmente en China donde se prevé la construcción de la presa Three Gorges Dam.

Derivados del petróleo

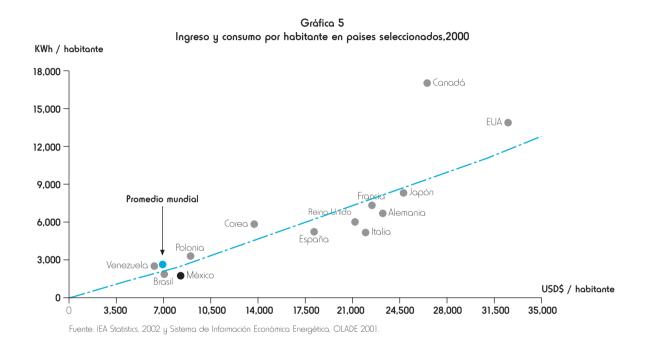

El papel significativo del petróleo en el mercado mundial de combustibles para generación eléctrica ha disminuido: en 1977 el petróleo participó con 23% de toda la energía primaria, en 1999 su aportación se redujo significativamente a 9.5%. Se espera que esta tendencia permanezca en las próximas dos décadas. La seguridad en el suministro de energía y consideraciones ambientales han influido en los mercados de generación eléctrica para reducir la demanda de los derivados del petróleo.

En la ex-Unión Soviética y el Medio Oriente, se proyecta que los derivados del petróleo continúen desempeñando un papel importante en la generación eléctrica. Se espera que la participación de estos combustibles en el total del mercado de electricidad se mantenga constante en 9% a lo largo del periodo analizado.

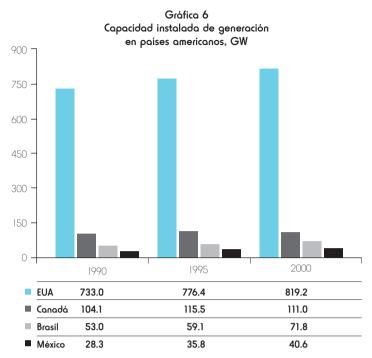
El Medio Oriente aportó la mayoría de petrolíferos para el mercado eléctrico, en 1999 produjo 35% de los combustibles consumidos en la industria eléctrica, y se espera disminuya su participación en 24% en los siguientes 20 años.

1.4 México en el contexto del mercado de energía eléctrica

A escala mundial, con base en la información de 2000 de la OCDE, México se ubica en el decimosexto lugar en el consumo de electricidad con 177 TWh. En este rubro, los principales consumidores son: EUA (3,813 TWh), China (1,254 TWh), Japón (1,056 TWh), Rusia (761 TWh), y Alemania (549 TWh).

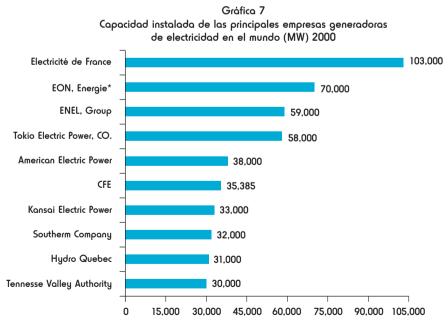


*/Otros: Incluye los sectores energético, transporte y agricultura.
Fuente: International Energy Agency.- Energy Balances of OECD countries & Energy Balances of non OECD countries, 1998-1999.


En el mercado de energía de América; EUA, Canadá, Brasil, México y Argentina concentran la demanda de energéticos. Mercados que distan mucho de ser homogéneos, como se muestra en la gráfica 4, que ilustra las diferencias en las estructuras de consumo de electricidad.

El avance en la industrialización de países en desarrollo es determinante para el crecimiento de su demanda eléctrica. Como se ilustra en la gráfica anterior, los países en desarrollo como México, consumen la mayor proporción de electricidad en su sector industrial.

El consumo de electricidad per cápita en México tendrá una tendencia ascendente en la medida que se incremente la actividad industrial y se mejore el nivel de vida de la población. En la gráfica 5,se aprecia un mayor ingreso per cápita de México respecto al promedio mundial y de países como Brasil y Venezuela, sin embargo, su consumo de electricidad por habitante aún no alcanza el nivel de estos países. En el caso de Canadá, gracias a su desarrollo hidroeléctrico, su consumo de electricidad por habitante resulta ser el mayor. Conjuntamente con los EUA, ambos muestran ingresos ascendentes y consumos constantes como producto del desarrollo tecnológico alcanzado.



La capacidad instalada del Sector Eléctrico Mexicano al cierre del 2000, fue de 40.5 GW, (89.0% del total lo aportó el servicio público y 11.0% correspondieron a generadores privados), capacidad que sólo es superada en el continente por la de Brasil con 71.8 GW, Canadá con 111 GW y de los EUA con 819.2 GW (gráfica 6).

Fuente: Sistema de Información Económica Energética, OLADE & IEA Statistics, 2002.

Por empresa, la Comisión Federal de Electricidad ocupó el sexto sitio a nivel mundial, de acuerdo a la capacidad instalada de generación eléctrica que registró en el 2000. Respecto a las ventas que facturó en el mismo año, ocupó el octavo lugar.

Fuente: Comisión Federal de Electricidad, con información de EE Energy Informer y Fortune Magazine.
*/estimado

capítulo dos

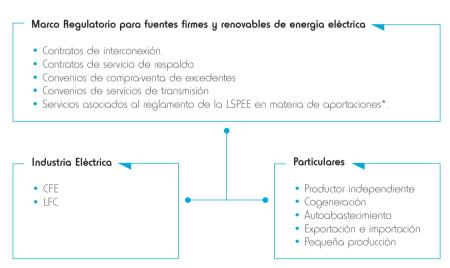
MARCO REGULATORIO EN LA INDUSTRIA ELÉCTRICA

Actualmente, el Estado a través de sus dos entidades, CFE y LFC, es el único responsable de proporcionar el servicio público de energía eléctrica. Esto incluye la generación, transmisión y distribución. Sin embargo, debido a restricciones presupuestales, el alto costo del servicio de la deuda y a los importantes cambios tecnológicos observados en la industria eléctrica, el Gobierno federal ha decidido fomentar la participación privada en este sector.

Por ello, en 1992 se reformó el marco legal de la industria eléctrica, para permitir la participación privada en esta industria. La figura de productor independiente de energía es la más utilizada por los particulares.

Marco legal de la industria eléctrica

2.1 Instrumentos de regulación


La creación de la Comisión Reguladora de Energía (CRE) obedece al interés de implementar un marco regulatorio transparente que permita la participación de la inversión privada en la generación de energía eléctrica. La Ley de este órgano desconcentrado le concede atribuciones que le posibiliten aprobar instrumentos de regulación, cuyo objetivo es establecer las bases que rigen las relaciones entre permisionarios de generación e importación de energía eléctrica y las empresas suministradoras del servicio público. Las atribuciones y facultades de la CRE son:

- Participar en la determinación de las tarifas para el suministro y venta de energía eléctrica;
- Otorgar y revocar los permisos y autorizaciones que, conforme a las disposiciones legales aplicables, se requieren para la realización de las actividades reguladas, y
- Aprobar modelos de convenios y contratos de adhesión para la realización de las actividades reguladas.

Dentro de las actividades no consideradas como servicio público, la CRE cuenta al mes de agosto de 2002, con el registro de 251 permisos de generación eléctrica vigentes. La *capacidad autorizada* asciende a 19,702 MW, cifra que representa la mitad de la capacidad efectiva del servicio público registrada en 2001. ¹

De acuerdo con la capacidad autorizada en los permisos vigentes, la modalidad de productor independiente tiene la participación más significativa con un total de 8,759 MW, representando 6.4% del total de permisos vigentes. En contraste, el autoabastecimiento que cuenta con 51.4% de los permisos autorizados tiene una capacidad autorizada de 5,925 MW.

La cogeneración es un esquema que en gran medida está asociada a la industria del petróleo, cuya participación aún no es significativa y representa el 10.6% de la capacidad total autorizada. El esquema de exportación aportó 11.0%, aunque sólo registra el 2% del total de permisionarios.

^{*/} Servicios de energía eléctrica, especificaciones técnicas del suministrador, convenio para las aportaciones, catálogo de precios del suministrador, y los criterios para determinar y actualizar el monto de las aportaciones.

 $^{^{\}rm I}$ La capacidad efectiva del servicio público fue de 38,519 MW al cierre del 2001.

Cuadro 3
Permisos de generación vigentes al mes de agosto de 2002

Reformas a la LSPEE	Modalidad	Permisos vigentes	Capacidad autorizada MW	Generación potencial GWh
Permisos anteriores	Usos propios continuos	60	599	2,027
a 1992	Osos propios continuos	00	399	2,027
	Producción independient	e 16	8,759	59,660
	Autoabastecimiento	129	5,925	34,317
Posterior	Exportación	5	2,171	15,542
	Cogeneración	33	2,096	12,327
	Importación	8	153	_
Total		251	19,703	123,873

Fuente: Comisión Reguladora de Energía.

La tecnología de generación seleccionada principalmente por los particulares es el ciclo combinado que representa 68.4% de la capacidad total autorizada. Lo anterior confirma la tendencia a utilizar gas natural como energético principal: en agosto del 2002, este hidrocarburo representó 87.4% del total de energéticos empleados en la generación de electricidad de los particulares.

La generación potencial de energía eléctrica en agosto de 2002, ascendió a 123,873 GWh, de este total, 48.2% procede de permisionarios de producción independiente de energía, 27.7% corresponde al autoabastecimiento y 10.0% a permisos de cogeneración.

2.2 Características generales de la regulación para fuentes firmes

Contratos de interconexión

Al cierre del 2001, existían 52 contratos de interconexión, 37 firmados con CFE, 2 con LFC y 13 en proceso. Este instrumento permite la interconexión de la central de generación de energía eléctrica de los permisionarios con el Sistema Eléctrico Nacional. Este contrato proporciona al permisionario los elementos necesarios para administrar las demandas de sus centros de carga, definiendo los procedimientos y parámetros para calcular los pagos por servicios conexos proporcionados por el suministrador (CFE y LFC).

La materia de este contrato incluye principalmente: las entregas de energía por el permisionario al suministrador, la energía en emergencias, la energía entregada en el periodo de prueba, los periodos de pago y plazos, las características de la medición, los casos y condiciones de interrupción de los servicios, el nombramiento de los coordinadores para las partes involucradas, así como el arbitraje.

Contratos de servicio de respaldo de energía eléctrica (para fuentes firmes)

Este servicio puede contratarse de acuerdo con las siguientes modalidades en media y alta tensión: i) respaldo por falla, ii) respaldo por mantenimiento, iii) respaldo por falla y mantenimiento. Al 31 de diciembre de 2001 se habían firmado 15 contratos con CFE y 7 más están en proceso.

Los cargos que el permisionario pagará al suministrador, están determinados por los procedimientos contenidos en las tarifas de respaldo.

Convenios de compraventa de excedentes de energía eléctrica

Es un convenio establecido entre el suministrador y el permisionario, el cual permite que el primero adquiera energía eléctrica excedente bajo las reglas de despacho del Sistema Eléctrico. El convenio establece las bases, procedimientos y condiciones que rigen la entrega de energía eléctrica del permisionario al suministrador. Al finalizar el 2001 se contaba con 26 convenios signados con CFE y 13 en proceso de firma.

Cuando el permisionario considera conveniente realizar entregas de energía económica al suministrador, se establece un programa previo que constituye los procedimientos de recepción por subasta y recepción automática. En la recepción por subasta, el programa se inicia con 15 días de anticipación, y la recepción es automática al día anterior a la entrega.

El pago por este servicio, considera como punto primordial el cumplimiento del programa establecido y el periodo horario en que se realicen las entregas. Dichos pagos están basados en el costo total de corto plazo del suministrador (en la región correspondiente) o en el precio propuesto por el permisionario.

Convenios de servicios de transmisión

El suministrador puede proporcionar este servicio en alta tensión, considerando un análisis de la red eléctrica nacional (con objeto de establecer los cambios que provoca el servicio) y en media tensión, pensando en el uso que el permisionario hace de la red. El convenio ofrece alternativas que dependen de las opciones de ajuste del factor de reparto, y de la aplicación de un cargo mínimo o normal por uso de la red.

Al cierre del 2001, se encontraban firmados 11 convenios con CFE, uno más con LFC y 14 se encuentran en proceso. Este convenio establece que el suministrador recibe la energía eléctrica del permisionario en el punto de interconexión, y la transporta hasta las cargas del permisionario de acuerdo con la capacidad de porteo contratada para cada carga.

Los convenios y contratos de adhesión se acompañan de diversos anexos, con objeto de establecer los procedimientos y parámetros de cálculo empleados para: determinar los pagos que efectuarán las partes involucradas en la interconexión. Asimismo proporcionan información sobre las características de la interconexión y de los servicios de transmisión, respaldo y conexos.

2.3 Características generales de la regulación para fuentes renovables

Con el objetivo de favorecer el desarrollo de proyectos de generación que utilicen fuentes de energía renovable, la CRE aprobó diversos instrumentos de regulación², que consideran la disponibilidad intermitente del energético primario.

Estos instrumentos suponen que una fuente de energía renovable es la que utiliza como energético primario la energía eólica, solar o la energía potencial del agua.

El diseño de estos instrumentos de regulación, está basado en la disponibilidad de los energéticos, por lo que se incluyen conceptos únicamente aplicables a éstos, los cuales deben ser considerados por los permisionarios, tales como:

- Energía sobrante. Cuando un permisionario, en un periodo de generación determinado, entrega una cantidad de energía mayor a la correspondiente de su potencia de compromiso de porteo, con sus centros de consumo; o cuando la demanda de los centros de consumo sea menor a la potencia entregada en el punto de interconexión;
- Si una fuente de energía en un periodo dado, no satisface la potencia de compromiso de porteo con sus centros de consumo, se considerará como energía faltante, y
- Cuando los centros de consumo requieran de energía mayor a la que reciben, se considerará como suministro normal de energía.

² El 7 de septiembre de 2001 se publicó en el DOF: a) la metodología para determinar los cargos por servicio de transmisión eléctrica; b) el modelo de contrato de transmisión, y c) los modelos de convenios de transmisión

2.4 Participación privada en la industria eléctrica

A fin de ejemplificar de forma general como se da la participación de los particulares en la industria eléctrica, a continuación se describe el contenido de un contrato de productor independiente de energía (PIE), por ser está la principal modalidad que cuenta con una capacidad autorizada mayor dentro del total de permisionarios en operación, así como de los requisitos para integrar un proyecto de cogeneración o autoabastecimiento.

Productor Independiente de Energía

El productor independiente contribuye a satisfacer los requerimientos de energía del SEN. Con esta finalidad CFE convoca a una licitación pública internacional para celebrar un contrato de compromiso de capacidad de generación y compraventa de energía eléctrica por un lapso de 25 años.

Especificaciones básicas de la licitación:

- El productor entregará la solicitud técnica para el Permiso de PIE, el cual entregará a la CRE. Dentro de los 30 días hábiles siguientes a que la CRE reciba de la CFE copia del contrato, se expedirá el permiso correspondiente.
- El productor esta obligado a realizar todos los trabajos necesarios para diseñar, construir, equipar, probar, poner en servicio, operar y mantener las instalaciones, las cuales son de su propiedad. Estará en libertad de construir una central con la capacidad requerida por la CFE o construir capacidad excedente para destinarla al autoabastecimiento, cogeneración u otra modalidad.
- El precio de la energía eléctrica de todas las propuestas a la CFE, será entregado en un sobre sellado rubricado por los participantes en el proceso de licitación, así como los servidores públicos que intervienen y el notario público que da fe de los hechos. La CFE adjudicará el contrato al licitante cuya propuesta económica ofrezca el menor precio unitario nivelado de generación.
- Cada licitante entregará una Garantía de la Propuesta, con valor de USD \$10,000,000 y con vigencia de 180 días a partir de la entrega de la propuesta.

• La CFE pagará al productor los cargos por:

Capacidad, divididos en: fijo de capacidad, fijo de operación y mantenimiento, y fijo por reserva de capacidad de transporte y suministro de combustible.

Energía, establecidos como: cargo variable de operación y mantenimiento, cargo por combustible y cargo por arranques de la planta.

- El licitante tiene la libertad de elegir el sitio para la construcción de las instalaciones, la ruta y los derechos de vía necesarios (siendo responsable de estos estudios).
- También es libre de seleccionar la tecnología del proyecto, así como celebrar sus propios acuerdos contractuales para el suministro y transporte de combustible. Alternativamente podrán optar por un contrato de combustible CFE-PIE.³
- El productor proporcionará el personal necesario para la realización de las pruebas de arranque. La CFE tienen derecho a que sus representantes estén presentes durante las mismas y supervisar el protocolo.
- La CFE pagará mensualmente al Productor por concepto de cargos (costos) por capacidad, cargos por energía y costos adicionales asociados al suministro de emergencias.
- El productor celebrará todos los contratos de trabajo que requiera para la realización del proyecto con el SUTERM, y en su caso, requerirá a los contratistas y al operador que celebren sus contratos de trabajo con dicho sindicato.
- El productor reconoce que por lo menos el 25% del costo total de ingeniería, suministro y construcción de las instalaciones deberá ser de origen mexicano.

³ La CRE publicó en el DOF el 30 de abril del 2002, la autorización a PEMEX Gas y Petroquímica Básica para entregar y enajenar gas natural a todos aquellos PIE´s que han firmado contratos de conformidad a la Resolución RES/100/2001.

Proyectos de autoabastecimiento y cogeneración

Los principales requisitos para un proyecto de este tipo son:

- Hacer un diagnóstico sobre las necesidades de energía eléctrica y térmica de una planta o plantas industriales específicas.
- Hacer un estudio de localización de la planta generadora de electricidad que provea a las plantas industriales asociadas al proyecto, a fin de optimizar los costos por servicio de transmisión y de suministro de combustible y agua.
- Concluido lo anterior, realizar el trámite para la obtención del permiso de cogeneración o autoabastecimiento. Posteriormente, suscribir el contrato de interconexión, los convenios de servicios de transmisión y de compraventa de excedentes de energía eléctrica, y el contrato de servicio de respaldo de energía, de acuerdo con las características del proyecto.
- Finalmente, formalizar los contratos de suministro de energía eléctrica y térmica, los contratos de suministro de combustibles, la concesión de derechos de uso de agua y la manifestación de impacto ambiental.

2.5 Normas Oficiales Mexicanas en la industria eléctrica

Una de las acciones concretas que inciden en los programas de protección ambiental y de acción climática es la política nacional de combustibles, que promueve el empleo de combustibles *limpios* y el uso de tecnologías de punta en los procesos industriales del sector eléctrico.

Actualmente, se fomenta la conversión de plantas termoeléctricas (en zonas ambientalmente críticas) que demandan combustóleo de alto contenido de azufre, por centrales de generación eléctrica que emplean gas natural.

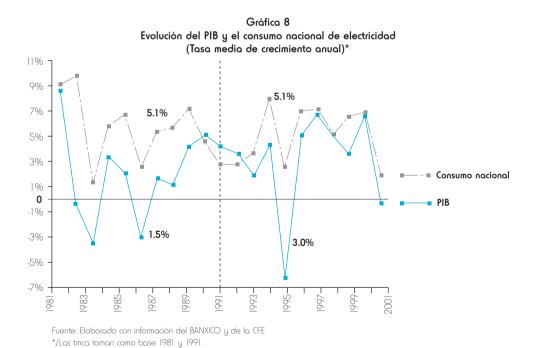
Las principales Normas Oficiales Mexicanas consideradas en la industria eléctrica y que se relacionan con el mejoramiento y cuidado del medio ambiente, son:

- NOM-085-ECOL-1994. Regula, por zonas y por capacidad, los niveles máximos permisibles de emisión a la atmósfera de humos, partículas suspendidas totales, bióxido de azufre y óxidos de nitrógeno, provenientes del equipo de combustión de fuentes fijas que utilizan combustibles sólidos, líquidos o gaseosos.
- NOM-001-ECOL-1996. Establece los límites máximos permisibles de contaminantes en las descargas de aguas residuales en aguas y bienes nacionales.
- NOM-CCA-001-ECOL/96. Establece los límites máximos permisibles de contaminantes en las descargas de aguas residuales a cuerpos receptores provenientes de las centrales termoeléctricas convencionales.
- NOM-114-ECOL-1998. Establece las especificaciones de protección ambiental para la planeación, diseño, construcción, operación y mantenimiento de líneas de transmisión y de subtransmisión eléctrica.

La Secretaría de Energía a través de la Conae, expide las Normas Oficiales Mexicanas (NOM's) de eficiencia energética, elaboradas por el Comité Consultivo Nacional de Normalización para la Preservación y Uso Racional de los Recursos Energéticos (CCNNPURRE), en colaboración y consensuadamente con los sectores público, privado, social, y de investigación y desarrollo tecnológico. Existen 16 NOM's de eficiencia energética que regulan los consumos de energía eléctrica de equipos y sistemas que ofrezcan un potencial de ahorro.

Cuadro 4 Normas Oficiales Mexicanas de eficiencia energética, 2002

	Hollings Officiales Mexicality de efficiencia effectiva, 2002
NOM-008-ENER-2001	Limita la ganancia de calor de las edificaciones a trvés de su envolvente, con objeto de racionalizar el uso de la energía en los sistemas de enfriamiento.
NOM-022-ENER-/SCFI /ECOL-2000	Para aparatos de refrigeración comercial, establece las especificaciones y los métodos de prueba de los valores de consumo de energía por litro, así como las especificaciones de seguridad al usuario y de eliminación de cloro-floro-carbonos (CFC's).
NOM-021-ENER /SCFI /ECOL-2000	Para acondicionadores de aire tipo cuarto, establece las especificaciones y los métodos de prueba de la Relación de Eficiencia Energética (REE), así como las especificaciones de seguridad al usuario y la eliminación de cloro-floro-carbonos (CFC's).
NOM-005-ENER-2000	Establece los niveles de consumo de energía eléctrica máximos permisibles que deben cumplir las lavadoras de ropa electrodomésticas.
NOM-001-ENER-2000	Fija los valores mínimos de eficiencia energética que deben cumplir las bombas verticales tipo turbi- na con motor externo.
NOM-018-ENER-1997	Establece las características y métodos de prueba que deben cumplir los materiales, productos componentes y elementos termo-aislantes para techos, plafones y muros de las edificaciones.
NOM-017-ENER-1997	Fija los límites mínimos de eficacia de las lámparas fluorescentes, con potencias hasta de 28 W y de los balastros con que operan.
NOM-016-ENER-1997	Establece los valores mínimos de eficiencia de los motores de corriente alterna, trifásicos, de inducción, tipo de jaula de ardilla, de uso general, en potencia nominal de 0.746 hasta 149.2 KW.
NOM-015-ENER-1997	Fija los límites máximos de consumo de energía de los refrigeradores y congeladores electrodomésticos.
NOM-014-ENER-1997	Establece los valores mínimos de eficiencia de los motores de corriente alterna, monofásicos, de inducción, tipo de jaula de ardilla, de uso general en potencia nominal de 0.18 hasta 1,500 KW.
NOM-013-ENER-1996	Establece niveles de eficiencia energética en términos de valores máximos de Densidad de Potencia Eléctrica de Alumbrado (DPEA).
NOM-011-ENER-1996	Establece los niveles mínimos de eficiencia energética estacional. Que deben cumplir los acondicio- nadores de aire tipo central.
NOM-010-ENER-1996	Fija los valores mínimos de eficiencia energética que deben cumplir el conjunto motor-bomba sumergibles.
NOM-007-ENER-1995	Establece niveles de eficiencia energética en términos de DPEA que debe cumplir los sistemas de alumbrado en edificios no residenciales nuevos y ampliaciones de los ya existentes. También establece el método de cálculo para determinar la DPEA de los sistemas de alumbrado para uso general de edificios no residenciales.
NOM-006-ENER-1995	Establece los valores de eficiencia energética que deben cumplir los sistemas de bombeo para pozo profundo instalados en campo.
NOM-004-ENER-1995	Establece los niveles mínimos de eficiencia energética que deben cumplirse para las bombas centrífugas de uso doméstico.


Fuente: Comisión Nacional para el Ahorro de Energía.

capítulo tres

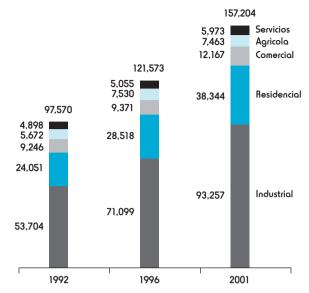
MERCADO ELÉCTRICO NACIONAL

Los mercados dinámicos como el de energía eléctrica, se transforman continuamente y cada vez son más complejos, propiciando nuevas formas de competencia. Su mejora requiere de estrategias y programas de larga gestación que garanticen el abasto, minimicen costos e incrementen la calidad en el suministro de electricidad.

En el presente capítulo se expone el crecimiento del consumo nacional durante los últimos diez años por sector y región. Este análisis identifica el comportamiento histórico de la demanda, de las ventas y de la estructura tecnológica de la industria eléctrica, a fin de prever el desarrollo del mercado.

3.1 Consumo nacional de electricidad

Como se aprecia en la gráfica 8, existe una correlación entre el PIB y el consumo eléctrico nacional (incluye ventas del sector público, autoabastecimiento, cogeneración y pequeña producción). Durante el periodo 1992-2001 el crecimiento promedio del consumo de electricidad fue de 5.1%, comportamiento superior al de la economía nacional que registró un aumento de 3.0% en igual periodo (gráfica 8).


Durante el 2002, se espera que las ventas internas se recuperen con un incremento de 3.4% en comparación con el aumento observado en 2001 (1.2%).

3.1.1 Ventas por sector del SEN

Al mes de diciembre del 2001, el sector público registró 24.8 millones de usuarios agrupados en cinco sectores, que demandaron en conjunto 157,204 GWh. Los sectores más dinámicos en las ventas de electricidad fueron el industrial y el residencial.

Las ventas internas de electricidad durante los últimos 10 años crecieron a una tasa promedio anual de 5.2%⁴, al pasar de 97,570 GWh a 157,204 GWh, cifra igual al crecimiento observado del consumo nacional en igual periodo. La evolución de las ventas en los sectores industrial y residencial fue muy similar, al registrar incrementos de 5.8% y 5.7% en promedio anual, respectivamente durante el periodo señalado, por encima de la media nacional.

Gráfica 9 SEN: ventas por sector de consumo GWh

Fuente: Comisión Federal de Electricidad.

El cuadro 5 presenta la información sectorial del número de usuarios atendidos a diciembre del 2001, así como las ventas de energía eléctrica y los ingresos derivados de éstas:

Cuadro 5 Usuarios, ventas e ingresos del sector público, 2001

Sector	Usuarios (miles)	Ventas GWh	Ingresos (millones de pesos)
Total	24,850	157,204	99,592.5
Residencial	21,872	38,344	23,289.2
Comercial	2,612	12,167	15,845.2
Servicios	141	5,973	6,772.1
Agrícola	96	7,463	2,338.0
Industrial	129	93,257	51,338.0

Fuente: Comisión Federal de Electricidad

Los clientes residenciales representaron 88.0% del total, y demandaron 24.4% de las ventas totales de energía eléctrica; mientras que el sector industrial consumió casi 60% de la electricidad producida en 2001 con 0.5% de los usuarios.

Las ventas de energía eléctrica de los sectores comercial y servicios registraron tasas de crecimiento inferiores a la media nacional, 3.6% y 2.4% respectivamente. El sector agrícola, obtuvo el menor crecimiento durante el periodo 1992-2001 con 1.4% promedio anual.

⁴ La tmca 1992-2001 considera como base el año de 1991.

3.1.2 Ventas por región

Con objeto de unificar las estadísticas regionales del país, la presente administración ha convenido en agrupar en cinco regiones la información que genera el Gobierno Federal, con objeto de hacerla comparable (figura 1). Cabe aclarar, que esta división no necesariamente coincide con la regionalización operativa del sistema eléctrico nacional, la cual se incluye en los anexos.

La evolución histórica de las ventas regionales se presenta en el cuadro 6, donde se observa que las regiones de mayor consumo

de electricidad durante el 2001 fueron la Centro y la Noreste con 40,993 GWh y 39,989 GWh respectivamente. El mayor crecimiento promedio anual durante los últimos diez años, se ha presentado en las regiones del norte del país.

Estas últimas registran climas extremos y desarrollos industriales que inciden en significativos incrementos de la demanda de energía eléctrica con cargas importantes como: HYLSA, Cementos Mexicanos, Cementos Pórtland, NAVISTAR (camiones), DELPHI, Peñoles, Ford Motor, y grandes sistemas de bombeo agrícola.

Cuadro 6 SEN: ventas totales por región estadística (GWh)

Región											tmca %
	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	1992-2001
Total	97,570	101,277	109,533	113,366	121,573	130,255	137,210	144,996	155,350	157,204	5.2
variación %	3.0	3.8	8.2	3.5	7.2	7.1	5.3	5.7	7.1	1.2	
Noroeste	12,197	12,396	13,470	14,122	15,774	16,901	17,230	18,505	19,949	20,480	5.6
variación %	2.6	1.6	8.7	4.8	11.7	7.1	1.9	7.4	7.8	2.7	
Noreste	22,449	23,314	25,626	27,052	29,457	31,658	33,961	36,404	39,236	39,989	6.7
variación %	7.4	3.9	9.9	5.6	8.9	7.5	7.3	7.2	7.8	1.9	
Centro-Occidente	20,770	22,224	24,417	25,210	26,910	28,926	30,763	32,801	35,192	34,909	5.6
variación %	3.1	7.0	9.9	3.2	6.7	7.5	6.4	6.6	7.3	-0.8	
Centro	28,910	29,731	31,366	31,199	32,810	35,080	36,611	38,239	40,733	40,993	4.1
variación %	5.7	2.8	5.5	-0.5	5.2	6.9	4.4	4.4	6.5	0.6	
Sur-Sureste	13,193	13,561	14,600	15,726	16,557	17,617	18,574	18,970	20,160	20,744	3.7
variación %	-8.9	2.8	7.7	7.7	5.3	6.4	5.4	2.1	6.3	2.9	
Pequeños Sistemas	51	51	54	57	65	73	71	77	80	90	

Fuente: Comisión Federal de Electricidad.

Nota: La base de cálculo de la tasa media de crecimiento anual es 1991.

Las regiones Noroeste y Centro-Occidente, presentan un alto crecimiento en sus compras de energía eléctrica, con tasas similares de incremento medio anual de 5.6%. La región que registra el menor aumento en el consumo de electricidad del periodo 1992-2001, es la Sur-Sureste.

Figura 1 Crecimiento medio anual de las ventas de electricidad por región estadística, 1992-2001

Fuente: Sener con información de la CFE

Total nacional: 5.2%

3.1.3 Comportamiento de la demanda máxima, por área del SI

Los perfiles de carga de un sistema están constituidos por diversas cargas locales (industrial, residencial, comercial, etc.) y dependen de la región geográfica, de la estación del año y de los días de la semana (en los días hábiles se presenta el mayor consumo de electricidad). La potencia media requerida en un periodo determinado, obedece al ritmo de las actividades económicas y sociales de la región.

Los valores anuales de la energía bruta necesaria para el servicio público se estimaron agregando a las ventas, los valores estimados de la energía asociada con las pérdidas de transmisión y distribución y los usos propios de las instalaciones de generación y transmisión.

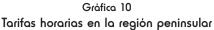
La demanda del Sistema Interconectado (SI)⁵ en una hora específica del año, es igual a la suma de las demandas de las áreas del sistema en esa misma hora. En el caso de un determinado año, el valor máximo de las demandas horarias del SI es la demanda máxima coincidente, la cual es menor que la suma de las demandas máximas anuales de las áreas (debido a que ocurren en momentos diferentes).

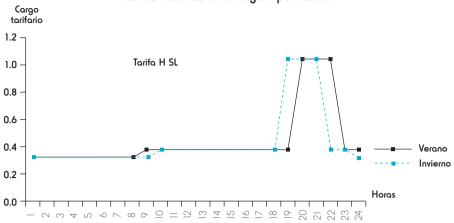
Para obtener la coincidencia del *SI*, se requiere conocer la demanda máxima de cada área hora por hora. Los sistemas aislados son tratados de manera independiente, para que en conjunto se prevean las necesidades de capacidad por área.

El cuadro 7 muestra que la áreas Peninsular y Noreste han registrado el mayor crecimiento medio por año en la demanda máxima, dentro de un rango de 6% y 7% para el periodo 1992-2001.

⁵ El sistema eléctrico nacional comprende nueve áreas eléctricas: Noroeste, Norte, Noreste, Occidental, Central, Oriental, Peninsular, Baja California y Baja California Sur. En el 2004 se interconectará el área Noroeste al Sistema Interconectado.

Cuadro 7 SEN: Demanda bruta por área: punta, media y base (MWh/h)


Área		1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	tmca (%) 1992-2001
					Sistema	Intercon	ectado					
	P	1,533	1,565	1,722	1,790	1,887	1,937	2,163	2,231	2,421	2,516	5.3
Norte	M	1,056	1,092	1,200	1,252	1,343	1,407	1,520	1,597	1,723	1,806	5.9
	В	951	987	1,084	1,133	1,223	1,290	1,378	1,457	1,569	1,649	6.1
	Р	3,098	3,150	3,516	3,693	4,005	4,307	4,662	4,759	5,245	5,558	6.8
Noreste	M	2,179	2,288	2,535	2,653	2,920	3,128	3,351	3,615	3,874	3,933	6.6
	В	1,976	2,098	2,318	2,423	2,680	2,867	3,061	3,363	3,571	3,574	6.5
	P	4,011	4,297	4,526	4,688	4,837	5,209	5,472	5,702	6,062	6,157	4.4
Occidental	M	2,813	3,038	3,331	3,375	3,611	3,916	4,164	4,435	4,732	4,701	5.5
	В	2,548	2,760	3,067	3,085	3,340	3,631	3,875	4,155	4,438	4,379	5.9
	P	5,133	<i>5,</i> 388	5,858	5,819	6,347	6,447	6,884	7,181	7,439	7,700	4.3
Central	M	3,344	3,448	3,708	3,772	3,949	4,202	4,406	4,616	4,885	5,048	4.7
	В	2,949	3,020	3,233	3,319	3,419	3,706	3,859	4,050	4,321	4,462	4.8
	P	3,540	3,696	3,795	4,352	4,463	4,528	4,797	4,954	5,058	5,291	4.1
Oriental	M	2,274	2,363	2,519	2,700	2,911	3,125	3,330	3,444	3,633	3,657	4.7
	В	1,994	2,069	2,238	2,335	2,568	2,815	3,006	3,111	3,318	3,296	4.9
	P	587	629	666	671	702	737	805	839	908	971	6.0
Peninsular	M	390	412	452	459	467	509	555	593	654	703	7.0
	В	346	364	405	412	416	459	499	539	597	644	7.4
		1			Siste	mas Aisla	dos					
	P	1,648	1,721	1,804	1,911	2,041	2,182	2,195	2,217	2,365	2,496	4.4
Noroeste	M	1,077	1,087	1,171	1,224	1,324	1,392	1,415	1,464	1,526	1,575	4.2
	В	950	947	1,032	1,072	1,166	1,217	1,243	1,298	1,340	1,371	4.2
	P	1,228	1,194	1,318	1,388	1,458	1,329	1,393	1,491	1,695	1,698	4.2
Baja California	M	802	795	839	873	890	813	842	927	1,048	1,087	3.7
	В	708	707	733	760	765	699	720	803	905	952	3.5
	P	139	128	147	153	164	170	181	186	204	224	5.4
Baja California Sur	M	88	86	96	97	109	114	117	125	132	136	4.5
	В	77	77	84	85	97	102	103	111	116	116	4.2


Fuente: Comisión Federal de Electricidad. P= carga máxima B= carga base M= carga media

Dentro de la estructura tarifaria del SEN, existen las tarifas horarias en media y alta tensión (unidades industriales, comercios y la gran industria, así como extensos sistemas de bombeo de agua potable) con objeto de reflejar el costo real de suministro, en virtud de que el costo por KWh es mayor en las horas comprendidas en los periodos de punta (gráfica 10).

Estas tarifas envían un mensaje a los usuarios con mayor demanda, para que administren su curva de consumo de acuerdo a sus necesidades, y al mismo tiempo propicien ahorros de energía.

El cliente escoge la tarifa que más le conviene (de 18 tarifas horarias), y busca reducir su factura, para lo cual intenta disminuir principalmente su demanda máxima y la energía consumida en periodo de punta. La señal tarifaria induce al cliente a reducir su demanda en el pico del sistema demanda y a reprogramarla en otro horario. Por lo que se envía una señal eficiente.

Región Peninsular: tarifas horarias (junio 2002)

					Horario en periodos de punta, intermedio y base								
Cargos tarifarios	НМ	H S	H SL	нм		H S		Н	SL				
Demanda facturable (\$/KW)	77.06	44.60	66.88	verano	invierno	verano	invierno	verano	invierno				
Energía base (\$/KWh)	0.3623	0.3241	0.3241	0:00 a 8:00	0:00 a 9:00	1:00 a 8:00	0:00 a 9:00	0:00 a 8:00	0:00 a 9:00				
					23:00 a 24:00		23:00 a 24:00		23:00 a 24:00				
Energía intermedia (\$/KWh)	0.4724	0.4004	0.3808	8:00 a 19:00	9:00 a 18:00	0:00 a 1:00	9:00 a 18:00	8:00 a 19:00	9:00 a 18:00				
				22:00 a 24:00	21:00 a 23:00	8:00 a 19:00	21:00 a 23:00	22:00 a 24:00	21:00 a 23:00				
						22:00 a 24:00							
Energía de punta (\$/KWh)	1.4746	1.4785	1.0493	19:00 a 22:00	18:00 a 21:00	19:00 a 22:00	18:00 a 21:00	19:00 a 22:00	18:00 a 21:00				

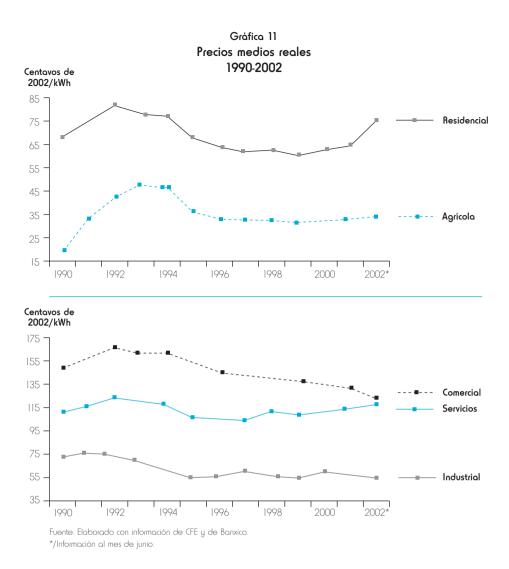
Fuente: Elaborado con información de CFE.

H M = Tarifa horaria para servicio general en media tensión, con demanda de 100 KW ó más.

3.1.4 Evolución de los precios reales en la industria eléctrica

Durante el 2001, las tarifas de electricidad se establecieron con base a una estructura de 31 categorías que dependen de la temperatura, el nivel de tensión, la energía demandada, el tipo de uso y la región. Éstas son aprobadas por la SHCP a solicitud expresa de la Sener, y su valor actual no cubre completamente el costo real de suministro.

En los últimos 12 años el precio real promedio de la energía eléctrica ha observado un decremento del 1.4% promedio anual al pasar de 75.4 centavos/KWh en 1990 a 65.5 centavos/KWh en 2001, a pesar de que durante el periodo observado se han ajustado periódicamente los precios de las tarifas⁶.

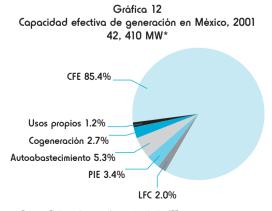

⁶ El 7 de febrero de 2002 el DOF publicó la creación de una nueva tarifa horaria en media tensión para la región de Baja California, con vigencia mínima de un año. En este mismo documento se ajustaron Las gráficas siguientes muestran que en términos reales los precios de electricidad en los sectores agrícola y residencial crecen hasta 1994, para posteriormente, disminuir e iniciar nuevamente un proceso de recuperación a partir del 2001. Aunque el precio del sector residencial se recupera más rápidamente. Estos sectores absorben la mayoría de los subsidios asignados al sector eléctrico.

El precio en los sectores de servicios, comercial e industrial ha caído a partir de 1992, repuntando en el caso del industrial y de servicios. El sector comercial presenta una caída en términos reales, éste no requiere de subsidio alguno, ya que su tarifa recupera el costo de suministro.

también las tarifas del sector residencial. Ver también DOF del 31 de diciembre de 2001.

H S = Tarifa horaria para servicio general en alta tensión, nivel subtrasmisión.

H SL = Tarifa horaria para servicio general en alta tensión, nivel subtrasmisión para larga utilización.


3.2 Comportamiento de la oferta

La industria eléctrica en la economía nacional es el dínamo de las actividades productivas y del bienestar de los mexicanos. Por ello, garantizar el abasto futuro de la demanda nacional de energía eléctrica es una prioridad nacional.

3.2.1 Sistema Eléctrico Nacional (SEN)

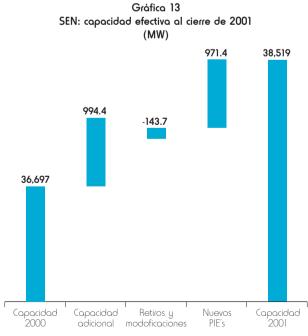
La capacidad instalada en operación de energía eléctrica en México, a diciembre de 2001 ascendió a 42,410 MW. De este total, la CFE participa con 36,236 MW, LFC 827 MW, los productores independientes⁷ 1,456 MW (conjuntamente forman

el sector público con 38,519 MW), autogeneradores 2,232 MW, cogeneradores 1,136 MW y con 524 MW otros productores particulares (gráfica 12).

Fuente: Elaborado con información de la CFE.

*/No considera capacidad autorizada, sólo en operación

Debido a que la CFE contrata la totalidad de la capacidad y energía para un periodo de 25 años, los PIE´s son considerados dentro del programa de obras de CFE y de la planeación del SEN.


Durante el 2001, el SEN adicionó capacidad por 1,965.8 MW, menos los retiros de capacidad por 143.7 MW (-100 MW ciclo combinado de Tula, -27 MW geotermoeléctrica Los Humeros, -3.1 MW de unidades turbogas, -1.35 MW en unidades de combustión interna y el retiro de 12.3 MW de unidades de emergencia) totalizaron una capacidad efectiva de 1,822.1 MW. Sumando esta capacidad con la registrada en el 2000 (36,697 MW) se incrementa a 38,519 MW la capacidad del sector público en el 2001 (ver cuadro 8 y gráfica 13).

Cuadro 8 Adiciones de capacidad, 2001

Central	Capacidad MW	l Tecnología y combustible	Esquema		Inversión (millones USA\$)
Total	1,965.8				1.268.6
Chihuahua II (El Encino)	423.3	Ciclo combinado (gas)	CAT	Chihuahua	272.7
Tres Vírgenes	10	Geotérmica	CAT	Baja California Sur	18.2
Presidente Juárez	496	Ciclo combinado (gas)	CAT	Baja California	334.4
Puerto San Carlos	41.1	Combustión interna (diese	el) CAT	Baja California Sur	58.6
El Verde	24	Turbogas (gas)	CAT	Jalisco	_
Hermosillo	228.9	Ciclo combinado (gas).	PIE	Sonora	160.9
Saltillo	247.5	Ciclo combinado (gas)	PIE	Coahuila	168.9
Tuxpan II	495	Ciclo combinado (gas)	PIE	Veracruz	254.9

Nota: La capacidad autorizada en los permisos otorgados por la CRE, señalan una capacidad de 252.7 MW para Hermosillo y 535.6 MW para Tuxpan.

Fuente: Elaborado con información de la CFE.

Fuente: Elaborado con información de CFE.

Para fines de operación y planeación de la industria eléctrica, el SEN se divide en nueve áreas⁸. Los subsistemas que operan interconectados (*SI*) lo hacen con la finalidad de compartir recursos de capacidad y establecer una operación más económica y confiable. Por ello, se tiene programada la interconexión del área Noroeste al resto del sistema en el año 2004.⁹

Las dos áreas de la península de Baja California permanecen como sistemas aislados, ya que no se justifica técnica y económicamente la interconexión con el resto del SEN. El sistema de Baja California opera interconectado con la red eléctrica de la región occidental de EUA, por medio de dos líneas de transmisión de 230 kV, mediante las cuales CFE realiza transacciones comerciales de capacidad y energía con diversas empresas de ese país.

⁸ Ibid. nota 5.

⁹ Actualmente esta área opera independientemente, por razones de estabilidad, aunque existen enlaces con las áreas Norte y Occidental.

Capacidad de generación

La capacidad instalada del SEN ascendió a 38,519 MW a diciembre del 2001, lo que significa un aumento de 5.0% respecto al 2000, incremento superior al de la demanda para igual año (1.2%). Las fuentes alternas de energía aportaron 37.4% de la capacidad total del SEN en el 2001; las centrales cuya generación es a partir de hidrocarburos contribuyeron con 62.6% del total.

La estrategia de expansión en el periodo 1991-2001 fue cimentada en la nueva tecnología de ciclo combinado, la cual alcanzó una capacidad instalada de 3,362 MW. Asimismo, la central dual de Petacalco inició su operación comercial con 1,400 MW en 1993, sin embargo, a mantenido una capacidad instalada de 2,100 MW a partir del año de 1994 y hasta el horizonte del periodo.

La capacidad instalada de las fuentes renovables (hidráulica, eólica y geotermia) aumentó 1,808 MW en los últimos años. Pese a ello, su participación en el total de la capacidad ha disminuido, ya que en 1991 aportó 32.3% y en el 2001 27.2% (cuadro 9 y gráfica 14).

Cuadro 9 Capacidad efectiva por planta, 1991-2001 (MW)

		Fuentes	alternas				Hidroca	arburos			
Año	Hidráulica	Geotermia	Eólica	Nuclear	Carbón	Térmica	Ciclo	Turbogas	Combustión	Dual	Total
						convencional	combinado		interna		
1991	7,931	720	-	675	1,200	12,553	1,826	1,777	115	-	26,797
1992	7,931	730	-	675	1,200	12,787	1,818	1,777	149	-	27,067
1993	8,171	740	-	675	1,900	12,574	1,818	1,777	149	1,400	29,204
1994	9,121	753	2	675	1,900	13,274	1,898	1,777	149	2,100	31,649
1995	9,329	753	2	1,309	2,250	13,595	1,890	1,682	129	2,100	33,039
1996	10,034	744	2	1,309	2,600	14,295	1,912	1,675	121	2,100	34,792
1997	10,034	750	2	1,309	2,600	14,282	1,942	1,675	121	2,100	34,815
1998	9,700	750	2	1,309	2,600	14,282	2,463	1,929	120	2,100	35,255
1999	9,618	750	2	1,368	2,600	14,283	2,463	2,364	118	2,100	35,666
2000	9,619	855	2	1,365	2,600	14,283	3,398	2,360	116	2,100	36,697
2001	9,619	838	2	1,365	2,600	14,283	5,188	2,381	143	2,100	38,519

Fuente: Comisión Federal de Electricidad

Gráfica 14 SEN: capacidad efectiva por planta, (MW) 38.519 840 Geo + eólica 1,365 Nuclear 1,294 2,100 Dual 1,400 2,600 1.758 Carbón 1.808 Ciclo 5,188 26,797 2,100 combinado 720 675 1,200 3,362 Turbogas 2,381 1,826 1.777 9,619 Hidráulica 7,931 Vapor + 14,426 combustión 12,668 interna Renovables Vapor 1991* Dual Carbón 2001 Ciclo Otras combinado

*/En 1991 no había planta dual. Fuente: Elaborado con información de CFE. Regionalmente sobresalen las siguientes centrales de generación:

Región Noroeste. La capacidad de generación que registró esta región en el 2001 fue de 6,196.4 MW, respecto al total nacional esta cifra representó 16.1% (cuadro 11). Durante el 2001, se construyó la primera central privada en el área, Hermosillo con capacidad de 229 MW.

Esta región cuenta con una capacidad instalada a base de centrales térmicas convencionales, que en conjunto con las de combustión interna, representan 49% del total regional. Destaca por su importancia la central Presidente Juárez, en Rosarito, Baja California que combina tres tecnologías con una capacidad efectiva de generación de 1,326 MW.

Las centrales hidráulicas y geotérmicas en la zona, aportaron 27% de la capacidad de generación local, destacan las centrales L. Donaldo Colosio (Huites) con 422 MW y Cerro Prieto con 720 MW es la mayor central geotérmica del país (cuadro 10).

Región Noreste. Esta región concentró 21.9% de la capacidad total, es decir, observó una capacidad de 8,442.7 MW. La región se beneficia de la infraestructura de gasoductos, en virtud de que una tercera parte del parque de generación es a base de gas natural (aquí se concentra la mayor parte de ciclos combinados del país, representan 43% de la capacidad instalada nacional con esta tecnología de generación).

El desarrollo carboeléctrico se localiza en el Estado de Coahuila, y comprende las centrales Río Escondido con 1,200 MW y Carbón II con 1,400 MW, las cuales aportaron 30.8% de la capacidad instalada local, la otra tercera parte corresponde a centrales térmicas convencionales y algunas pequeñas hidroeléctricas. En el 2001 se construyó la primera central privada, Saltillo con capacidad de 248 MW.

Región Centro-Occidente. Al cierre del 2001, en esta zona existían 5,804.8 MW de capacidad efectiva de generación, 15.1% del total. Esta región concentra el mayor avance de centrales térmicas convencionales en todo el país; contribuyen casi con una cuarta parte.

El desarrollo de centrales hidroeléctricas también resulta importante localmente, participaron con 32.4% de la capacidad instalada, destacando la central de Aguamilpa Solidaridad (960 MW), una de las más importantes de su género en el país. La central geotérmica Los Azufres (93 MW) amplía el parque de generación con fuentes renovables.

Región Centro. Esta zona importa electricidad de las áreas aledañas, ya que sólo cuenta con una capacidad instalada de 3,940.4 MW (10.2% del total). De este total, 82% lo aportan las centrales térmicas a base de hidrocarburos, y el restante 18% las centrales hidroeléctricas y geotérmicas como Zimapán y Los Humeros.

Gran parte de esta región es considerada como ambientalmente crítica, por lo cual las centrales de vapor están sustituyendo paulatinamente el combustóleo y diesel por gas natural, como las centrales de Tula, Valle de México y Jorge Luque, que en conjunto representan casi 80% de la capacidad instalada en la región.

Región Sur- Sureste. En esta zona se ubica la mayor capacidad de generación eléctrica del país con 14,131.5 MW (36.7% del total). Aquí se localiza el mayor desarrollo hidroeléctrico nacional, que a nivel local participó con 42.3% de la capacidad instalada (5,976.4 MW). Sobresalen las centrales hidroeléctricas de Angostura, Chicoasén, Malpaso, Peñitas, El Caracol, Temascal e Infiernillo.

Como parte de la diversificación del parque de generación en la zona, se ubica la central nuclear Laguna Verde con dos unidades que totalizan una capacidad instalada de 1,364.9 MW. Asimismo, se localiza la central dual de Petacalco, con una capacidad de 2,100 MW, con flexibilidad para utilizar combustóleo y/o carbón. En conjunto ambas contribuyen con 25% de la capacidad instalada de la región (ver cuadro 10).

En esta región se localiza la mayor central eólica del país (1.6 MW), aunque su participación es marginal en la capacidad instalada local. Aquí se ubica el segundo mayor desarrollo de centrales de ciclo combinado (1,643 MW), después de la región noreste, como se muestra en el cuadro 11.

Cuadro 10 Principales centrales en operación, 2001

Región	Central	Municipio	Estado	Tipo	Núm. de unidades	Capacidad MW	Generación GWh	Factor de planta %
Total					584		197,105.9	58.4
20002	Pdte. Elías C. (El Novillo)	Soyopa	Sonora	Hidroeléctrica	3	135.0	313.2	26.5
	Prof. R. J. Marsal (Comedero)	Cosalá	Sinaloa	Hidroeléctrica	2	100.0	115.3	13.2
	Bacurato	Sinaloa de Leyva		Hidroeléctrica	2	92.0	268.0	33.3
	L. Donaldo Colosio (Huites)	Choix	Sinaloa	Hidroeléctrica	2	422.0	856.8	23.2
e	Puerto Libertad	Pitiquito	Sonora	Vapor	4	632.0	3,568.4	64.5
ţ	C. Rodríguez R. (Guaymas II)	Guaymas	Sonora	Vapor	4	484.0	2,668.9	62.9
S	J. Aceves P. (Mazatlán II)	Mazatlán	Sinaloa	Vapor	3	616.0	3,516.7	65.2
a	Pdte. Juárez (Rosarito)	Rosarito	Baja California	•	11	1,326.0	4,309.6	37.1
r o	J. Dios Bátiz (Topolobampo II)	Ahome	Sinaloa	Vapor	3	360.0	1,996.4	63.3
0	Cerro Prieto	Mexicali	Baja California	•	13	720.0	5,008.5	79.4
Z	Agustín Olachea	San Carlos	B. C. S.	C. Interna	3	104.1	361.4	39.6
2	Punta Prieta	La Paz	B. C. S.	Vapor	3	112.5	665.7	67.6
	27 de septiembre	El Fuerte	Sinaloa	Hidroeléctrica	3	59.4	253.2	48.7
	Humaya	Badiraguato	Sinaloa	Hidroeléctrica	2	90.0	178.0	22.6
	Hermosillo (PIE)	Hermosillo	Sonora	C. Combinado	1	228.9	492.2	24.5
	` ,	Sta. Rosalía	B.C.S.	Geotérmica	2	10.0	16.9	19.3
	Tres Vírgenes Altamira	Altamira	Tamaulipas	Vapor	4	800.0	5,388.5	76.9
		S. N. Garza	Nuevo León	•	6	465.0	2,986.4	73.3
	Monterrey			Vapor	4		,	68.5
	E. Portes G. (Río Bravo)	Río Bravo	Tamaulipas	Vapor / TG		520.1	3,121.2	63.3
	Francisco Villa	Delicias	Chihuahua	Vapor	5	399.0	2,211.6	
t e	Samalayuca	Cd. Juárez	Chihuahua	Vapor	2	316.0	1,505.8	54.4
s	Guadalupe Victoria	Lerdo	Durango	Vapor	2	320.0	2,316.0	82.6
မ	Río Escondido	Río Escondido	Coahuila	Carbón	4	1,200.0	9,218.4	87.7
\	Carbón II	Nava	Coahuila	Carbón	4	1,400.0	9,348.6	76.2
0	Samalayuca II	Cd. Juárez	Chihuahua	C. combinado	6	521.8	3,613.9	79.1
Z	Huinalá	Pesquería	Nuevo León	C. Combinado	6	517.4	3,544.5	78.2
	Huinalá II	Pesquería	Nuevo León	C. combinado	2	450.2	1,765.4	44.8
	Gómez Palacio	Gómez Palacio	Durango	C. combinado	3	200.0	842.2	48.1
	La Amistad	Acuña	Coahuila	Hidroeléctrica	2	66.0	75.1	13.0
	Chihuahua II (El Encino)	Chihuahua	Chihuahua	C. combinado	3	423.3	2,450.1	66.1
	Saltillo (PIE)	Saltillo	Coahuila	C. combinado	1	247.5	236.9	10.9
t e	J. Ma. Morelos (Villita)	L. Cárdenas	Michoacán	Hidroeléctrica	4	295.0	1,123.4	43.5
d t	Aguamilpa	Tepic	Nayarit	Hidroeléctrica	3	960.0	718.8	8.5
9	Agua Prieta	Zapopan	Jalisco	Hidroeléctrica	2	240.0	212.4	10.1
þ	M. Álvarez M. (Manzanillo)	Manzanillo	Colima	Vapor	4	1,200.0	7,652.3	72.8
•=	Manzanillo II	Manzanillo	Colima	Vapor	2	700.0	5,559.3	90.7
S	Salamanca	Salamanca	Guanajuato	Vapor	4	866.0	5,438.2	71.7
° (Villa de Reyes	Villa de Reyes	S. L. P.	Vapor	2	700.0	5,154.8	84.1
0	El Sauz	P. Escobedo	Querétaro	C. combinado	5	340.0	2,417.2	81.2
0	Azufres	Cd. Hidalgo	Michoacán	Geotérmica	11	92.9	414.1	50.9
¥	Cupatitzio	Uruapan	Michoacán	Hidroeléctrica	2	72.5	377.1	59.4
ţ	Cóbano	G. Zamora	Michoacán	Hidroeléctrica	2	52.0	231.2	50.7
u	M. M. Dieguez (Sta. Rosa)	Amatitlán	Jalisco	Hidroeléctrica	2	61.2	192.5	35.9
e e	Lerma (Tepuxtepec, LFC)	Contepec	Michoacán	Hidroeléctrica	3	60.0	264.1	50.2
C	Colimilla	Tonalá	Jalisco	Hidroeléctrica	4	51.2	15.2	3.4

Cuadro 10 (continuación)

	Necaxa (LFC)	J. Galindo	Puebla	Hidroeléctrica	10	109.0	295.5	30.9
0	Fernando Hiriart B. (Zimapán)	Zimapán	Hidalgo	Hidroeléctrica	2	292.0	1,086.9	42.5
H	Fco. Pérez R. (Tula)	Tula	Hidalgo	Vapor/CC	10	1,882.0	13,802.1	83.7
+	Valle de México	Acolman	México	Vapor/TG	7	838.0	5,079.6	69.2
e n	Jorge Luque (LFC)	Tultitlán	México	Vapor/TG	8	362.0	768.4	24.2
Ü	Mazatepec	Tlatlauquitepec	Puebla	Hidráulica	4	220.0	600.3	31.1
	Humeros	Chignautla	Puebla	Geotérmica	3	15.0	127.2	96.8
	Patla (LFC)	Zihuateutla	Puebla	Hidroeléctrica	3	37.0	28.1	8.7
	B. Domínguez (Angostura)	Alcalá	Chiapas	Hidroeléctrica	5	900.0	2,911.0	36.9
	M. Moreno T.	Chicoasén	Chiapas	Hidroeléctrica	5	1,500.0	6,407.5	48.8
	Malpaso	Tecpatan	Chiapas	Hidroeléctrica	6	1,080.0	3,912.7	41.4
	Peñitas	Ostuacán	Chiapas	Hidroeléctrica	4	420.0	1,768.4	48.1
o	Temascal	San Miguel	Oaxaca	Hidroeléctrica	6	354.0	1,344.7	43.4
+	C. Ramírez U. (Caracol)	Apaxtla	Guerrero	Hidroeléctrica	3	600.0	1,099.0	20.9
s o	Infiernillo	La Unión	Guerrero	Hidroeléctrica	6	1,000.0	2,624.5	30.0
4	A. López M. (Tuxpan)	Tuxpan	Veracruz	Vapor	6	2,100.0	14,638.4	79.6
Ħ	Lerma	Campeche	Campeche	Vapor	4	150.0	972.4	74.0
S	Mérida II	Mérida	Yucatán	Vapor	2	168.0	942.3	64.0
	F. Carrillo Puerto	Valladolid	Yucatán	Vapor/CC	5	287.0	1,695.6	67.4
r r	Laguna Verde	Alto Lucero	Veracruz	Nuclear	2	1,364.9	8,726.3	73.0
S	Pte. P. Elías C. (Petacalco)	La Unión	Guerrero	Dual	6	2,100.0	14,109.2	76.7
	Dos Bocas	Medellín	Veracruz	C. combinado	6	452.0	2,721.0	68.7
	Poza Rica	Tihuatlán	Veracruz	Vapor	3	117.0	770.8	75.2
	Nachi - Cocom II	Mérida	Yucatán	Vapor / TG	3	79.0	266.4	38.5
	Mérida III (PIE)	Mérida	Yucatán	C. combinado	2	484.0	3,195.6	75.4
	Tuxpan II (PIE)	Tuxpan	Veracruz	C. Combinado	1	495.0	449.6	10.4
	Otras *	-	-	-	297	2,083.9	3,778.1	-

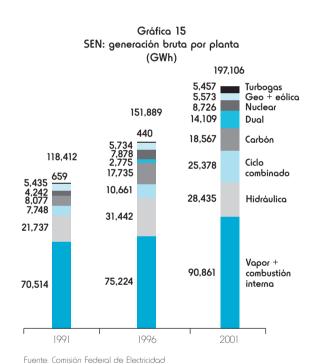
Fuente: Comisión Federal de Electricidad.

TG: Turbogás

Cuadro 11 SEN: Capacidad efectiva por región (MW), 2001

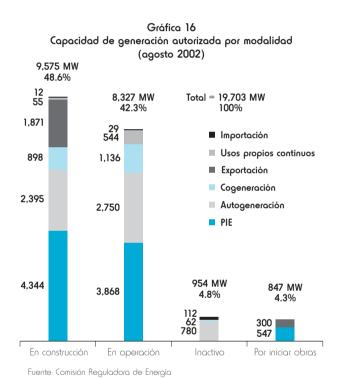
		Fuent	es Alternas	5			Hidr	ocarburos	6		
Región	Eólica	Hidráulica	Geotermia	Nuclear	Carbón	Térmica	Ciclo	Turbogas	Combustión	Dual	Total
						convencional	combinado		interna		
Total	2.2	9,619.2	837.9	1,364.9	2,600.0	14,282.5	5,188.3	2,380.7	143.2	2,100.0	38,518.8
Participación %	0.01	25.0	2.2	3.5	6.7	37.1	13.5	6.2	0.4	5.5	100.0
Noroeste	0.6	941.2	730.0			2,894.5	724.9	767.9	137.3		6,196.4
Noreste		125.5			2,600.0	2,789.0	2,220.4	707.8			8,442.7
Centro-occidente		1,880.7	92.9			3,466.0	218.0	146.0	1.2		5,804.8
Centro		695.4	15.0			2,474.0	382.0	374.0			3,940.4
Sur-sureste	1.6	5,976.4		1,364.9		2,659.0	1,643.0	385.0	1.6	2,100.0	14,131.5
Plantas móviles *									3.1		3.1

Fuente: Comisión Federal de Electricidad.


^{*}Incluye 215 GWh de generación de los Productores Independientes de Energía (PIE), en pruebas.

^{*/}La ubicación de estas unidades no es fija, depende de las necesidades del servicio.

Generación bruta por planta


Durante los últimos 10 años la energía bruta generada creció en promedio anual 5.2%. En este lapso, las centrales de vapor convencionales disminuyeron su participación en la energía producida total, de 57.6% a 46.1%, mientras que la participación de las centrales a base de gas aumentaron en más del doble de 6.2% a 15.6%, por su parte las fuentes renovables disminuyeron su contribución de 26.2 a 17.3%.

La energía producida en México durante 2001 fue de 209,716 GWh, correspondiéndole a CFE 190,881 GWh, LFC 1,636 GWh y los productores independientes aportaron 4,589 GWh, totalizando 197,106 GWh (gráfica 15), los 12,610 GWh restantes corresponden a productores privados.

3.2.2 Generación privada de energía eléctrica

La información más reciente de la CRE (*agosto de 2002*), reporta un total de 251 permisos vigentes, con una capacidad instalada potencial de 19,703 MW y un potencial de producción interna de energía de 123,873 GWh. De la capacidad total, se encuentra en construcción 48.6%, en operación 42.3%, por iniciar obras 4.3% y 4.8% se encuentra inactiva (gráfica 16). La capacidad en operación representa 22.5% (8,327 MW) de la capacidad efectiva de CFE y LFC en el 2001.

Productores Independientes de Energía (PIE)

El reporte de la capacidad autorizada bajo el esquema de producción independiente de energía fue de 8,759 MW al mes de agosto de 2002. De este total, 49.6% está en construcción, 44.2% en operación y por iniciar obras 6.2%.

Todos los proyectos con este esquema son de tecnología de ciclo combinado y tienen una inversión acumulada de 4,817.6 millones de doláres, cifra estimada al mes de agosto de 2002 por la Comisión Reguladora de Energía y se presenta en el cuadro 12.

Cuadro 11 Proyectos de Productor Independiente de Energia

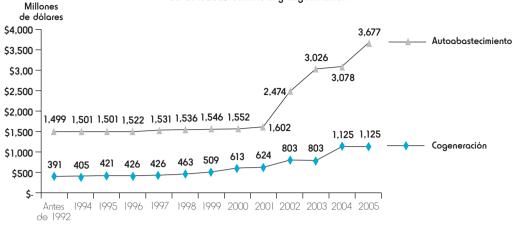
Permisionario	Capacidad autorizada (MW)	Energía autorizada (GWh/Año)	Inversión (miles de doláres)	Entrada en operación	Energético primario	Ubicación
Total	8,759	59,660	4,818			
	Eı	n operación				
Central Saltillo, S.A. de C.V.	248	1,650	136	10/11/01	gas natural/diesel	Coahuila
Energía Azteca VIII, S. de R. L. DE C.V.	597	4,399	328	15/01/02	gas natural	Guanajuato
Iberdrola Energía Monterrey, S.A. de C.V.	570	3685	314	26/03/02	gas natural	Nuevo León
Fuerza y Energía de Hermosillo, S.A. de C.V.	253	1,800	139	01/10/01	gas natural	Sonora
Central Anáhuac, S.A. de C.V.	569	3,700	313	18/01/02	gas natural/diesel	Tamaulipas
Electricidad Aguila de Altamira, S. de R.L. de C.V.	565	3,632	311	01/05/02	gas natural	Tamaulipas
AES Mérida III, S. de R.L. de C.V.	532	3,400	292	31/05/00	gas natural/diesel	Yucatán
Electricidad Aguila de Tuxpan, S. de R.L. de C.V.	536	3,707	295	16/12/01	gas natural/diesel	Veracruz
	En	construcción				
Energía Azteca X, S. de R.L. de C.V.	597	4,850	328	01/04/03	gas natural	Baja Calif.
Transalta Campeche, S.A. de C.V.	275	2,103	151	30/03/03	gas natural	Campeche
Transalta Chihuahua, S.A. de C.V.	318	2,174	175	30/05/03	gas natural	Chihuahua
Fuerza y Energía de Naco-Nogales, S.A. de C.V.	339	1,920	187	01/04/03	gas natural	Sonora
Iberdrola Energía Altamira, S.A. de C.V.	1,154	7,797	635	01/10/03	gas natural	Tamaulipas
Central Lomas de Real, S.A. de C.V.	541	3,780	298	01/04/04	gas natural	Tamaulipas
Fuerza y Energía de Tuxpan, S.A. de C.V.	1,120	7,363	616	30/05/03	gas natural	Veracruz
	Por	iniciar obras	3			
Central Valle Hermoso, S.A. de C.V.	547	3,700	301	01/04/05	gas natural	Tamaulipas

Fuente: Comisión Reguladora de Energía.

Autoabastecimiento y cogeneración

La respuesta de los particulares en los proyectos de autoabastecimiento y cogeneración no ha sido la esperada por diversos motivos (no existen reglas adecuadas para la compra-venta de excedentes de estos proyectos).¹⁰

En agosto de 2002, la capacidad autorizada en las modalidades de autoabastecimiento y cogeneración fue de 8,021 MW, de los cuales 23.4% corresponde a proyectos de Pemex. La generación potencial para estos proyectos ascendió a 46,644 GWh, de este total Pemex aporta 16.9%.


El potencial de cogeneración de Pemex (4,600 MW)¹¹ resulta atractivo para complementar la oferta de electricidad, ya que se traduciría en ahorros de combustible primario y se optimizarían los recursos empleados en dichos procesos productivos.

El desarrollo de estos sistemas con participación privada (mediante empresas de servicios energéticos) permitiría contar con las inversiones necesarias para su implementación, las cuales serían recuperadas mediante contratos de suministro de energía con Pemex y empresas privadas que participen como socios. En caso de existir excedentes de energía eléctrica, éstos se venderían a CFE y LFC.

¹⁰ El 24 de mayo de 2001, el jefe del Ejecutivo emitió un Decreto por el cual se reforman diversas disposiciones, referentes a la compra que realiza CFE de excedentes de energía eléctrica a las empresas cogeneradoras y autoabastecedoras. El 7 de julio del mismo año, el Congreso de la Unión interpuso una controversia constitucional ante la Suprema Corte de Justicia en contra del Ejecutivo Federal, por considerar que éste se excedió en sus funciones reglamentarias al invadir facultades que son competencia del Poder Legislativo. La Suprema Corte de Justicia declaró inconstitucional la reforma propuesta del Ejecutivo el 25 de abril de 2002.

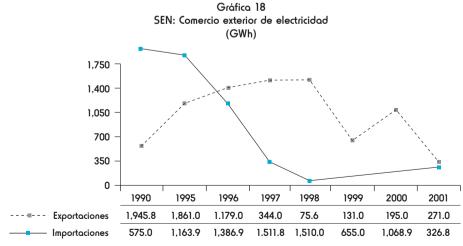
¹¹ Dirección Corporativa de Planeación Estratégica, Pemex. Estimación preliminar de cogeneración simple.

Gráfica 17
Inversión en la capacidad de generación en las modalidades
de autoabastecimineto y cogeneración

Fuente: Comisión Reguladora de Energía.

Nota: Las fechas de entrada en operación comercial autorizadas para cada permiso

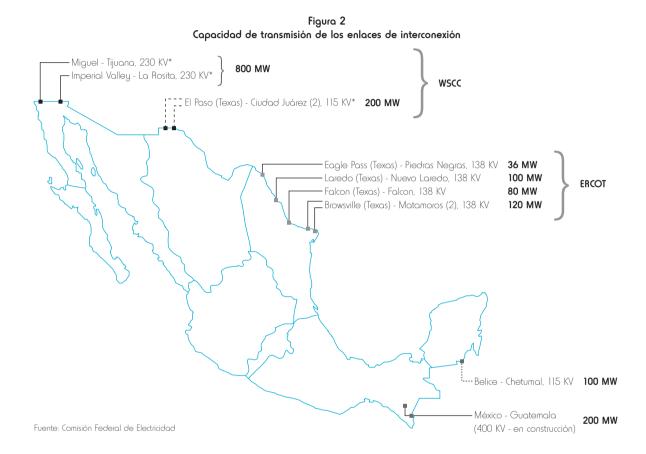
Otros esquemas de participación privada


Las otras modalidades establecidas en la legislación vigente son la exportación, importación y los permisos de autoabastecimiento anteriores a 1992 en conjunto reportaron una capacidad autorizada de 2,923 MW, cifra que representa 14.8% de la capacidad total autorizada y aportan 14.2% de la generación eléctrica potencial (sin incluir importación).

En este rubro destaca en los últimos años la modalidad dirigida a la exportación, con una capacidad de 2,171 MW que serán instalados en el área de Baja California, empleando principalmente tecnología de ciclo combinado y una central eólica (Fuerza Eólica de B.C.)

3.2.3 Comercio exterior de energía eléctrica

En las áreas eléctricas del Noroeste, Noreste, Norte, Baja California y Peninsular, por su ubicación geográfica, es posible realizar transacciones internacionales de energía eléctrica.


El comercio exterior de energía eléctrica para México aún es marginal. En el 2001, las exportaciones crecieron 39%, aunque el nivel absoluto es de poca consideración. Las principales ventas se realizaron en la zona de Tijuana hacia el Estado de California en los EUA (gráfica 18).

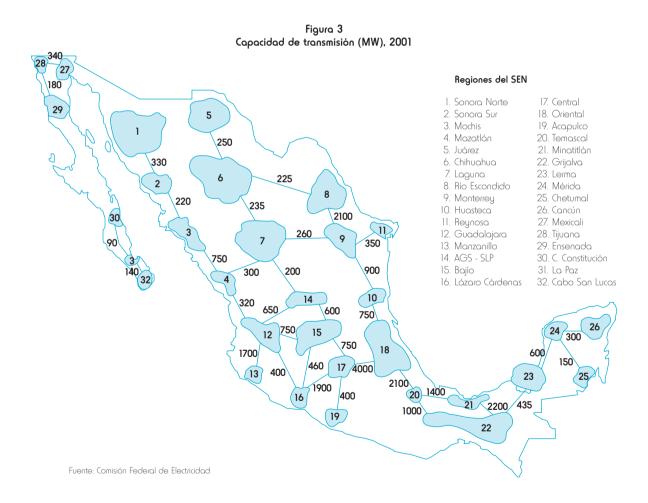
Fuente: Comisión Federal de Electricidad

En cambio, las importaciones a partir de 1997 muestran un comportamiento inestable, observando una severa disminución en 2001 de 65% respecto al 2000, debido al crecimiento en la generación del SEN. El saldo del comercio exterior de energía eléctrica al cierre del 2001 fue deficitario en 56 GWh.

En la figura 2 se muestran los enlaces de interconexión y su capacidad de transmisión para transacciones internacionales de energía eléctrica.

3.2.4 Capacidad de transmisión del SEN

La evolución de la red de transmisión considera, por una parte, la magnitud y dispersión geográfica de las cargas y, por otra, la localización de las centrales generadoras. En general, los centros de generación y consumo de electricidad están alejados entre sí, por lo cual se interconectan gradualmente.


Durante el 2001, el SEN contaba con 670,902 km de líneas de transmisión en niveles de tensión de 2.4 a 400 kV, del total 95.6% pertence a CFE y 4.4% a LFC. Por niveles de tensión,

5.4% corresponde a líneas de 230 y 400 kV, 6.2% a líneas de 69 a 161 kV, y el restante 88.4% a líneas de 2.4 a 60 kV.

En subestaciones se dispone de una capacidad instalada de 170,985 MVA, de los cuales 113,556 MVA corresponden a subestaciones de transmisión y 33,078 MVA a distribución de CFE; así como 24,351 MVA que corresponden a subestaciones de LFC. De manera general la red de transmisión se forma como sigue:

- Red de transmisión troncal. Formada por líneas de transmisión y subestaciones de potencia de alta tensión (230 y 400 kV) y dispone de 36,339 km. Movilizan grandes cantidades de energía entre regiones, abasteciendo las redes de subtransmisión y las instalaciones de algunos usuarios industriales.
- Redes de subtransmisión. De cobertura regional y utilizan altas tensiones de transmisión (69 a 161 kV) y cuentan con 41,312 km. Suministran energía a redes de distribución en media tensión y a cargas de usuarios conectadas en alta tensión de subtransmisión.
- Redes de distribución en media tensión. Suministran la energía en niveles de voltaje de 2.4 a 60 kV dentro de zonas relativamente pequeñas; la longitud acumulada de estas líneas es de 563,413 km. Abastecen las redes de distribución en baja tensión y usuarios de media tensión.
- Red de LFC. Totalizan 29,838 km en niveles de tensión de 6.6 a 400 KV.
- Respecto a las redes de distribución en baja tensión, suministran energía en 220 ó 240 volts entre fases; alimentan cargas de usuarios con consumos pequeños.

En la figura 3, se muestra la capacidad de transmisión del SEN representado por 32 regiones, en el 2001.

capítulo cuatro

PROSPECTIVA DEL SISTEMA ELÉCTRICO NACIONAL (SEN)

Actualmente, existe un consenso sobre la necesidad de reestructurar la industria, eléctrica, pero es difícil anticipar la reforma que el Poder Legislativo tenga a bien aprobar, después de analizar y estudiar los diversos puntos de vista sobre este importante tema. Dentro de éstos destaca la propuesta que, recientemente, el Ejecutivo envió al Congreso para reformar la Constitución y diversas Leyes que definen el marco legal y regulatorio de la industria, así como las iniciativas del Partido Revolucionario Institucional y del Partido de la Revolución Democrática.

Este capítulo de prospectiva es el resultado de un ejercicio de planeación de largo plazo que supone que el sector eléctrico se desempeña dentro del marco legal vigente. Se identifican las necesidades de infraestructura, compatibles con la dinámica prevista de crecimiento económico y demográfico del país. Adicionalmente, se presenta el pronóstico del consumo de electricidad del periodo 2002-2011, tanto de la energía suministrada por el servicio público como por los autogeneradores. El resultado de estas estimaciones permite identificar los requerimientos de capacidad efectiva y de energía bruta necesarias para satisfacer el consumo de electricidad, así como la infraestructura asociada.

Una vez estimado el consumo nacional de energía, se deduce la parte cubierta por particulares y la diferencia es la energía eléctrica que suministrará el servicio público. Cualquier posible modificación en el programa de instalación de proyectos de autoabastecimiento y cogeneración (que venden excedentes a CFE), introduce un elemento de incertidumbre a la planeación del SEN, pues, de no concretarse alguno de los más importantes proyectos, podría ponerse en riesgo el abasto suficiente y oportuno de electricidad.

Por lo anterior y con base en la probable realización de los proyectos de cogeneración de Pemex, 12 fue necesario que la CFE, incluyera dentro de esta Prospectiva dos análisis en el escenario de planeación: uno que integra explícitamente el proyecto de cogeneración de Nuevo Pemex y, otro, que incluye los proyectos de cogeneración de Pemex: Tula y Salamanca, en adición al de Nuevo Pemex.

4.1 Escenarios macroeconómicos y supuestos básicos

a). La recesión económica mundial del 2001, afectó las expectativas de crecimiento de México (la actividad económica del país se contrajo 0.3%) y las de su principal socio comercial, los EUA, a donde se dirige cerca del 90% de nuestras exportaciones.

La contracción económica nacional afectó significativamente la producción de la industria, que redujo su actividad en 3.5%. Pese a ello, la industria eléctrica tuvo un moderado crecimiento de 1.2% en las ventas del sector público. De esta forma, el peso de las ventas del sector industrial en el mercado eléctrico observó una drástica caída, al pasar de un aumento de 7.5% en el 2000 a un decremento de 0.5% durante el 2001.

A fin de presentar las mejores estimaciones, se han adoptado tres escenarios económicos: el de planeación, que se sustenta en un crecimiento medio anual del PIB del 4.5%; el alto crecerá 5.6%, y el moderado aumentará en promedio 3.4% anual durante el periodo 2002-2011 (cuadro 13).

b). El pronóstico del precio del crudo, gas natural y petrolíferos es el mismo en los tres escenarios, en términos de dólares por unidad física. La evolución en moneda nacional es diferente, en función de la inflación y del tipo de cambio.

Las variaciones estimadas del comportamiento del precio de los principales combustibles es el siguiente: el precio anual del combustóleo se mantiene estable (planeación -0.2%, -0.3% alto y 0.5% moderado), mientras que el precio del gas natural aumentará ligeramente (0.6% planeación, 0.5% alto y 1.4% en el moderado).

- c). Los escenarios realizados suponen la introducción de nuevos equipos y dispositivos de iluminación en los sectores residencial, comercial e industrial, así como, los ahorros de energía por la implementación del Horario de Verano.
- d). La energía suministrada por particulares, considera la tendencia histórica de la capacidad instalada y la programación de nueva capacidad. El escenario de planeación, contempla un crecimiento promedio anual de la energía autoabastecida de 7.3% para los próximos diez años. Incluyendo los proyectos de Pemex, el crecimiento sería de 9.1%.

Cuadro 13
Escenario macroeconómico de planeación
(tasa media de crecimiento anual, %)

Índice	Prospectiva	2001-2010	Prospectiva	7a 2002-2011		
	2001-2006	2001-2010	2001-2006	2002-2011		
PIB global	5.2	5.2	3.5	4.5		
PIB manufacturas	6.0	5.9	3.4	5.3		
Vivienda	3.1	3.2	3.3	3.1		
Población	1.3	1.2	1.3	1.2		
Precio medio	1.2	0.6	3.1	1.6		

Fuente: Sener y CFE.

 $^{^{\}rm 12}$ Información proporcionada por la Dirección Corporativa de Planeación Estratégica de Pemex.

e). Dentro del escenario de planeación, se considera una trayectoria alterna por la posible entrada en operación de los proyectos de cogeneración de Pemex:

Concepto	Nuevo Pemex	Salamanca	Tula	Total
Inicio de operación	2006	2008	2008	
Capacidad de	305	594	478	1,377
cogeneración (MW)*				
Combustible	Gas natural	Residuos	Residuos	
		de vacío	de vacío	

^{*/} Incluye autoabastecimiento local y remoto

Impacto sobre la demanda de CFE:

En general, la capacidad y energía autoabastecida, en forma remota y local, se refleja en menores ventas al sector industrial del servicio público.

Impacto sobre la oferta de CFE:

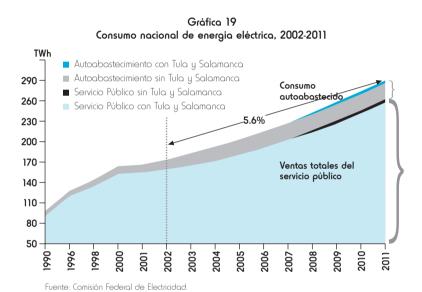
- Se difiere capacidad programada del servicio público.
- La red de transmisión prevista para el 2002-2006 no se verá afectada por la incorporación de los proyectos de autoabastecimiento de: Tula y Salamanca. El programa de transmisión de 2007-2011 considera los refuerzos de transmisión necesarios para la interconexión de éstos proyectos al sistema eléctrico nacional.
- El consumo de combustibles en el servicio público se reduce.

- f). El margen de reserva del sistema se mantiene constante en 27%, mientras que el margen operativo en 6%, suponiendo que no existen restricciones en el sistema.
- g). Las pérdidas de distribución como proporción de la generación total se mantienen constantes en alrededor de 16%.
- h). Se adoptan los resultados del Grupo de Trabajo de Autoabastecimiento y Cogeneración coordinado por la Sener, que se presentan en la sección 4.3.6.

4.2 Pronóstico del consumo nacional de electricidad

El estudio prospectivo del mercado eléctrico tiene la finalidad de analizar los escenarios probables de crecimiento del consumo nacional. Este considera el análisis de algunas cargas específicas de importancia nacional y regional; la actualización anual de solicitudes formales de servicio e investigaciones particulares del mercado regional; el estudio de tendencias y de comportamiento sectorial y regional, y las estimaciones sobre proyectos de autogeneración y cogeneración con alta probabilidad de realización durante el periodo 2002-2011.

Cuadro 14
Sistema Eléctrico Nacional: escenario de planeación
(tasa media de crecimiento anual, %)


Indicador	Prospectiva	2001 -2010	Prospectiva	2002 -2011	
	2001-2006	2001-2010	2001-2006	2002-2011	
Consumo nacional	6.4	6.3	4.7	5.6	
Consumo autoabastecido	20.7	14.2	14.0	7.3	(9.1)
Ventas totales	4.9	5.5	3.8	5.4	(5.3)
Residencial	4.6	4.9	4.1	4.5	
Comercial	5.1	4.8	5.1	4.9	
Servicios	5.2	4.8	3.3	4.8	
Agrícola	0.8	0.7	0.0	1.3	
Industrial	5.3	6.1	3.9	6.2	(5.9)
Empresa mediana	7.2	7.3	5.4	6.5	
Gran industria	2.5	4.4	1.8	5.7	(5.0)

Nota: Las cifras entre paréntesis muestran el escenario con la inclusión de los proyectos de Pemex. Fuente: Comisión Federal de Flectricidad El consumo de electricidad, sin considerar las pérdidas de distribución y los autoconsumos del sector, crecerá a una tasa promedio de 5.6% anual en el periodo 2002-2011; al término del horizonte de proyección se calcula que el consumo alcanzará 291.5 TWh (gráfica 19) en el escenario de planeación (313.1 TWh en el alto y 266.7 TWh en el moderado).

El consumo en el 2001 fue de 169.3 TWh; el SEN abasteció el 93% y el resto proviene de fuentes de autoabastecimiento. Al final del horizonte de estudio la aportación del consumo autoabastecido será de 8.4% y de 9.9% de concretarse los proyectos de Tula y Salamanca de Pemex. De realizarse estos pro-

yectos, durante el periodo prospectivo, el consumo nacional no se modificaría; sin embargo, la estructura de participación sería diferente, tanto para el consumo autoabastecido, como para las ventas del servicio público.

Las ventas totales de energía eléctrica del servicio público crecerán en promedio anual 5.4% los próximos diez años, hasta alcanzar 267.6 TWh al final del periodo. Con el supuesto de que se concretarán los proyectos de autoabastecimiento y cogeneración de Pemex en Tula y Salamanca, las ventas totales descenderían a 263.3 TWh, al final del periodo (cuadro 15).

Las ventas del servicio público en el sector industrial, presentará dos trayectorias a partir del 2006, por lo que su tasa de crecimiento promedio anual disminuirá en tres décimas de punto porcentual, al pasar de 6.2 a 5.9%, debido a que CFE y LFC dejan de vender energía a los grandes consumidores. Pese a ello, este sector seguirá impulsando el crecimiento del consumo nacional.

Los sectores de servicios, comercial y residencial mantendrán un crecimiento medio anual cercano a 5% para el periodo 2002-2011. El crecimiento del sector agrícola será de 1.3% a lo largo del periodo (cuadro 15).

Cuadro 15 Servicio Público: Ventas totales por sector (GWh)

														tmca (%)
Sector	1995	1998	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2002-2011
Total nacional	115,227	137,285	157,475	163,035	167,957	174,696	184,650	195,296	207,649	221,028	235,771	251,335	267,601	5.4
Total ventas internas	113,366	137,209	157,204	162,478	167,400	174,139	184,093	194,739	207,092	220,471	235,214	250,778	267,044	5.4
Residencial	28,493	31,690	38,344	39,394	40,539	41,830	43,666	45,859	48,219	50,755	53,574	56,566	59,679	4.5
Comercial	9,636	10,496	12,167	12,696	13,354	14,119	14,906	15,698	16,490	17,278	18,049	18,850	19,676	4.9
Servicios	5,293	5,192	5,973	6,040	6,168	6,413	6,751	7,154	7,570	7,998	8,469	8,987	9,538	4.8
Industrial	63,269	82,088	93,255	96,864	99,773	104,101	110,957	118,118	126,829	136,317	146,871	157,986	169,649	6.2
Bombeo agrícola	6,675	7,743	7,465	7,484	7,567	7,676	7,813	7,910	7,985	8,123	8,251	8,388	8,503	1.3
Exportación	1,861	76	271	557	557	557	557	557	557	557	557	557	557	7.5
				Modific	aciones co	n la inclusi	ón de pro	yectos de	Pemex					
Total nacional			-	-	-	-	-	195,087	207,291	218,238	231,748	247,216	263,313	5.3
Industrial				-	-	-	-	117,909	126,471	133,527	142,848	153,867	165,361	5.9

Nota: El cálculo de las tasas de crecimiento considera 2001 como base.

Fuente: Comisión Federal de Electricidad.

4.2.1 Análisis del mercado regional de energía eléctrica

Las proyecciones regionales se fundamentan en estudios estadísticos de tendencia, complementados con estimaciones basadas en las solicitudes de servicio de grandes consumidores.

Para determinar la capacidad y la ubicación de las nuevas centrales generadoras, así como la expansión óptima de la red de transmisión, es necesario estimar la potencia y la energía que se requiere en cada uno de los diferentes centros de consumo del país.

Las ventas de energía a los usuarios de las cargas importantes (básicamente del sector industrial) se estiman con la informa-

ción proporcionada en las solicitudes de nuevos servicios y mediante la aplicación de encuestas anuales que la CFE realiza con este propósito.

El estudio regional de las ventas de energía eléctrica, estima que los mayores crecimientos en el periodo 2002-2011, se observarán en las zonas más industrializadas del país: la Noreste, con un incremento medio anual de 6.5%, y la Noroeste, con un crecimiento de 5.6%. Las ventas en las regiones Centrooccidente y Sur-sureste aumentarán en promedio anual 5.2% cada una, mientras que en la región Centro crecerán en 4.5% promedio anual (cuadro 16).

Cuadro 16 Servicio Público: Ventas totales por región estadística (GWh)

														tcma (%)
Región	1995	1998	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2002-2011
Total nacional	113,366	137,209	157,204	162,478	167,400	174,139	184,093	194,739	207,092	220,471	235,214	250,778	267,044	5.4
Noroeste	14,122	17,230	20,480	20,928	21,928	23,017	24,317	25,679	27,177	28,852	30,789	32,971	35,251	5.6
Noreste	27,052	33,961	39,989	41,684	42,685	44,889	47,859	51,245	55,300	59,510	64,335	69,311	74,918	6.5
Centro-Occidente	25,210	30,763	34,908	36,982	37,741	38,767	40,623	42,329	44,852	47,816	51,080	54,578	58,197	5.2
Centro	31,199	36,610	40,993	41,255	42,794	44,263	46,829	49,598	52,170	55,090	58,016	61,070	63,946	4.5
Sur-sureste	15,726	18,574	20,744	21,537	22,158	23,106	24,364	25,783	27,484	29,089	30,875	32,724	34,602	5.2
Pequeños sistemas	57	71	90	92	94	97	101	105	109	114	119	124	130	3.7
				Modific	aciones co	n la inclus	ión de pro	yectos de	Pemex					
Total nacional	-	-	-	-	-	-	-	194,530	206,734	217,681	231,191	246,659	262,756	5.3
Sur-sureste	-		-	-	-	-	-	25,574	27,126	28,337	30,163	32,012	33,890	5.0

Nota: El cálculo de las tasas de crecimiento considera 2001 como base.

Fuente: Comisión Federal de Electricidad.

Cuadro 17 Demanda bruta por área eléctrica: punta, media y base (MWh/h)

													tmca (%)
Área		2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2002-2011
				9	istema l	Intercon	ectado ((SI)					
	P	2,516	2,599	2,676	2,958	3,133	3,300	3,499	3,740	4,016	4,306	4,612	6.2
Norte	M	1,806	1,866	1,921	2,123	2,249	2,369	2,512	2,685	2,882	3,090	3,311	6.2
	В	1,649	1,704	1,754	1,939	2,054	2,163	2,294	2,452	2,632	2,822	3,023	6.2
	P	5,558	5,960	6,408	6,795	7,185	7,636	8,173	8,633	9,238	9,852	10,539	6.6
Noreste	М	3,933	4,220	4,571	4,878	5,203	5,542	5,913	6,307	6,763	7,223	7,757	7.0
	В	3,574	3,836	4,165	4,455	4,765	5,079	5,414	5,793	6,216	6,642	7,143	7.2
	Р	6,157	6,604	6,876	7,093	7,429	7,710	8,113	8,593	9,108	9,663	10,254	5.2
Occidental	M	4,701	5,042	5,257	5,429	5,691	5,918	6,235	6,617	7,036	7,484	7,947	5.4
	В	4,379	4,696	4,899	5,062	5,307	5,522	5,820	6,180	6,579	7,003	7,437	5.4
	P	7,700	7,941	8,500	9,007	9,479	9,907	10,351	10,788	11,222	11,699	12,121	4.6
Central	М	5,048	5,141	5,467	5,694	6,041	6,398	6,718	7,048	7,374	7,721	8,038	4.8
	В	4,462	4,522	4,797	4,962	5,281	5,623	5,916	6,221	6,524	6,843	7,136	4.8
	Р	5,291	5,419	5,609	5,811	6,071	6,531	6,923	7,296	7,700	8,093	8,497	4.9
Oriental	M	3,657	3,747	3,880	4,017	4,197	4,521	4,787	5,046	5,330	5,612	5,900	4.9
	В	3,296	3,378	3,499	3,620	3,784	4,077	4,315	4,549	4,806	5,063	5,327	4.9
	Р	971	1,018	1,075	1,135	1,210	1,301	1,390	1,482	1,579	1,679	1,791	6.3
Peninsular	М	703	742	783	827	882	948	1,014	1,081	1,152	1,225	1,307	6.4
	В	644	681	719	759	810	871	930	992	1,058	1,125	1,200	6.4
	P				2,678	2,773	2,884	3,020	3,197	3,413	3,655	3,915	-
Noroeste	M				1,690	1,751	1,822	1,909	2,023	2,157	2,311	2,477	-
	В				1,472	1,526	1,588	1,664	1,763	1,880	2,014	2,159	-
					Sist	emas Ai	slados						
	P	2,496	2,542	2,599									-
Noroeste	M	1,575	1,604	1,640									-
	В	1,371	1,397	1,429									-
	P	1,698	1,795	1,955	2,086	2,243	2,405	2,563	2,729	2,909	3,119	3,301	6.9
Baja California	М	1,087	1,148	1,248	1,329	1,427	1,527	1,626	1,729	1,843	1,976	2,091	6.8
	В	952	1,005	1,091	1,161	1,247	1,334	1,419	1,509	1,608	1,723	1,824	6.7
	P	224	226	241	265	281	297	313	331	349	368	388	5.6
Baja California Sur	M	136	137	146	160	170	180	189	200	211	223	235	5.7
	В	116	117	125	137	146	154	162	172	181	191	202	5.7
		1	Modifica	ciones o	on la in	clusión							<u> </u>
	P						2,883	3,019	3,145	3,375	3,616	3,877	-
Noroeste	M						1,822	1,909	2,023	2,157	2,311	2,477	-
	В						1,588	1,664	1,775	1,880	2,023	2,168	-
	P								8,507	9,022	9,577	10,168	5.1
Occidental	М								6,594	6,997	7,445	7,908	5.3
	В								6,171	6,550	6,975	7,408	5.4
	P								10,788	11,103	11,580	12,002	4.5
Central	М								7,016	7,320	7,667	7,984	4.7
	В								6,209	6,485	6,803	7,096	4.7
	P						6,526	6,918	7,291	7,695	8,088	8,492	4.8
Oriental	M						4,519	4,785	5,044	5,328	5,609	5,898	4.9
	В						4,076	4,313	4,547	4,805	5,062	5,325	4.9

Fuente: Comisión Federal de Electricidad.

De ejecutarse los proyectos de Tula y Salamanca, se pronostica que el crecimiento medio anual de la región Sur-sureste disminuirá en dos décimas de punto porcentual respecto a la estimación original.

4.2.2 Demanda máxima por área operativa del SEN

La demanda máxima total que será abastecida por el SEN es igual a la demanda del servicio público más la demanda de las centrales de autoabastecimiento y cogeneración que requieren servicios de porteo de energía. Se estimó la demanda de transmisión y respaldo, para éstos proyectos, tomando como referencia las centrales de las empresas Enertek (tiene contrato de respaldo con CFE), Arancia (con porteo en distribución entre sus socios) y las contenidas en el programa de proyectos de autoabastecimiento y cogeneración que se utilizó como base para esta prospectiva. Para efectos de la planeación del SEN, la demanda autoabastecida que no requiere servicios de transmisión y de respaldo, se considera fuera del sistema.

El cuadro 17 presenta las cifras correspondientes a la demanda bruta por área eléctrica, representada mediante tres indicadores: demanda máxima anual, demanda media y demanda base (promedio anual de las demandas mínimas diarias).

Se observa que los mayores incrementos en la demanda bruta máxima, con tasas de crecimiento medio anual superiores al 6%, se ubican en cuatro zonas: Noreste, Baja California, Peninsular y Norte. Estas regiones concentran los mayores corredores industriales y proyectos turísticos del país.

De efectuarse los proyectos de Pemex en Nuevo Pemex, Tula y Salamanca, la demanda bruta podría verse modificada básicamente en cuatro áreas: Occidental, Central y Oriental y Noroeste.

4.3 Expansión del sistema eléctrico nacional

Los requerimientos de infraestructura eléctrica del SEN (capacidad adicional comprometida y no comprometida) para atender los incrementos de la demanda futura, serán cubiertos mediante proyectos denominados *capacidad adicional comprometida*. Estos incluyen proyectos en proceso de construcción, en licitación o programados. Las obras consideradas dentro de la *capacidad adicional no comprometida*, son aquellas que aún no tienen esquemas definidos y no han sido concursados para su licitación.

El programa de expansión del SEN requiere de una planeación de largo plazo (la vida útil de los proyectos es de aproximadamente 30 años), que analice diversas configuraciones de proyectos factibles (técnica y económicamente), con objeto de seleccionar los que minimizan los costos de inversión y operación, a través de modelos de optimización y simulación.

Este programa considera explícitamente: la situación actual del sistema de generación y de la red troncal de transmisión; la demanda máxima y capacidad necesaria (del sistema interconectado y sistemas aislados); y los proyectos de autoabastecimiento y cogeneración con servicios de transmisión y respaldo; los retiros de capacidad; y, la capacidad adicional total (capacidad comprometida más capacidad no comprometida).

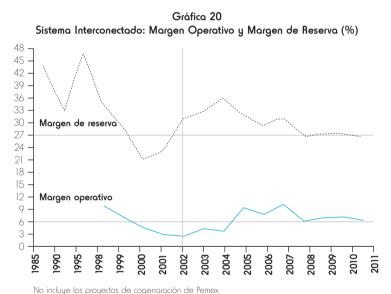
A mediados del año 2004, el Área Noroeste se incorporará al Sistema Interconectado (SI) con la entrada en operación del enlace de 230 Kv Nacozari-Nuevo Casas Grandes. Los sistemas de la Península de Baja California son independientes en la planeación del SEN.

4.3.1 Capacidad de reserva

La capacidad de reserva es la diferencia entre la capacidad efectiva de generación del Sistema y la demanda máxima o demanda pico en un periodo. Para satisfacer la demanda máxima anual en condiciones de confiabilidad, la capacidad del sistema eléctrico debe ser mayor a ésta en un cierto porcentaje. La capacidad de reserva es un indicador importante, porque:

- No es posible almacenar la energía eléctrica. Esta se produce en el instante en que se consume.
- La capacidad del sistema está sujeta a reducciones como consecuencia de salidas programadas de plantas por mantenimiento y eventos fortuitos como fallas, degradaciones, fenómenos climatológicos, entre otros.

Los requerimientos de capacidad se determinan por la demanda máxima coincidente, la cual es menor a la suma de demandas máximas de los sistemas regionales, ya que éstas no son cronológicamente coincidentes. Las cifras correspondientes al pronóstico de la demanda máxima anual del *SI*, se calculan aplicando a la energía bruta, los factores de carga estimados para los diferentes consumidores de la región o área correspondiente.


En los sistemas aislados, los requerimientos de capacidad se definen de manera individual, en función de sus propias curvas de carga y de sus demandas máximas.

La capacidad de reserva de un sistema depende de las centrales que lo conforman y de sus factores de disponibilidad, de la capacidad de las unidades generadoras en relación con la capacidad total, y de las condiciones de mallado de la red.¹³

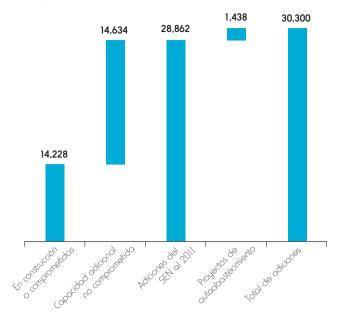
No existe un criterio único para definir el margen de reserva que debe adoptarse en la planeación de un Sistema. Existen dos métodos: el *probabilístico* que está en función del costo de falla (probabilidad de pérdida de carga), o el *determinístico*, basado en valores promedio de disponibilidad de las centrales generadoras. Este último es el adoptado en México; bajo este criterio ¹⁴ se estableció un margen de reserva de 27% y un margen operativo de 6%, tanto para el SI, como para el área Noroeste.

En el caso del área eléctrica de Baja California, se adopta como nivel mínimo de capacidad de reserva (descontando el retiro de capacidad efectiva por mantenimiento) lo que sea superior a: (i) la capacidad de la unidad mayor, ó (ii) el 15% de la demanda máxima. En el área de Baja California Sur, se acepta como mínimo de capacidad de reserva, el total de la capacidad instalada de las dos unidades mayores.

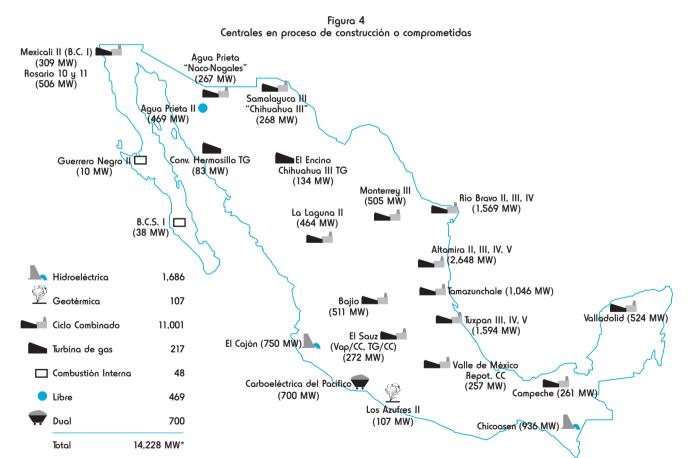
Como se muestra en la gráfica 20, durante el periodo 2002-2011 el margen de reserva será igual ó superior al 27%; sin embargo, la reserva operativa durante los primeros años de la década resulta insuficiente, considerando los bajos niveles de almacenamiento de agua en las presas y por la disminución del factor de disponibilidad de las centrales térmicas a 80% en promedio, por falta de mantenimiento oportuno, ante la escasez de recursos presupuestales.¹⁵

Fuente: Comisión Federal de Electricidad.

¹³ Cuando varios sistemas regionales se encuentran sólidamente mallados, es posible reducir el margen de reserva, debido a que los recursos de capacidad de generación se comparten en forma eficiente.
¹⁴ En 1998, se adoptó un criterio determinístico para establecer el margen de reserva del SEN, con la participación de funcionarios de las SENER, SHCP, SECODAM, CNA y CFE.


¹⁵ La disponibilidad normal con recursos presupuestales para programas de mantenimiento apropiado sería del 83.7%.

4.3.2 Programa de expansión 2002-2011


Durante los próximos diez años, el SEN requerirá adiciones de capacidad por un total de 28,862 MW, de las cuales 14,228 MW se consideran como capacidad comprometida y 14,634 MW se obtendrán de proyectos de capacidad adicional no comprometida. La capacidad remota de los proyectos de autoabastecimiento y cogeneración considerada para la expansión del sistema de generación en el periodo 2002-2011, será de 1,438 MW con lo cual la capacidad adicional total será de 30,300 MW (gráfica 21).

Con las modificaciones en demanda y en capacidad de proyectos de autoabastecimiento y cogeneración de Pemex, los requerimientos de capacidad del servicio público se reducirán durante el periodo a 27,728 MW; mientras que las adiciones de capacidad de autogeneración, para fines de planeación del SEN, se incrementarán a 2,310 MW.

Gráfica 21 Programa de expansión del Sistema Eléctrico 2002-2011, MW

Fuente: Comisión Federal de Electricidad.

 $^{^*}$ /Las cifras están redondeaas a números enteros, por lo que los totales podrían no correponder. Fuente: Comisión Federal de Electricidad.

Cuadro 18 Proyectos de generación: capacidad comprometida

			Fecha	Modalidad	I						
Proyecto	Ubicación	Tipo	del	de				MW			
			concurso	licitación	2002	2003	2004	2005	2006	2007	2008
	En	proces	o de cons	trucción							
Río Bravo II (operando)	Nuevo León	CC	1998	PIE	511						
Monterrey III (operando)	Nuevo León	CC	1998	PIE	505						
Altamira II (operando)	Tamaulipas	CC	1998	PIE	525						
Campeche	Campeche	CC	1998	PIE		261					
Mexicali (Rosarito 10 y 11)	Baja California	CC	1998	PIE		506					
Bajío (El Sauz, operando)	Guanajuato	CC	1999	PIE	511						
Valle de México (operando)	Edo. de México	CC	2000	RP	257						
Chicoasén 2da. etapa	Chiapas	HID	2000	OPF		312	624				
Los Azufres II (4 U´s)	Michoacán	GEO	2000	OPF		107					
Agua Prieta (Naco Nogales)	Sonora	CC	2000	PIE		267					
Altamira III y IV	Tamaulipas	CC	2000	PIE		1,066					
Tuxpan III y IV	Veracruz	CC	2000	PIE		1,048					
Samalayuca III (Chih. III)	Chihuahua	CC	2000	PIE		268					
Río Bravo III	Tamaulipas	CC	2000	PIE			512				
Subtotal					2,310	3,835	1,136	-	-	-	-
		A	djudicados								
Río Bravo IV	Tamaulipas	CC	2001	PIE				546			
Subtotal	•				-	-	-	546	-	-	_
	E	n proc	eso de lici	tación							
Guerrero Negro II	Baja California Sur		2002	CAT			10				
Baja California Sur I	Baja California Sur		2003	OPF			38				
La Laguna II	Durango	CC	2001	PIE				464			
Mexicali II (Baja California I)	Baja California	CC	2002	PIE					309		
Altamira V	Tamaulipas	CC	2002	PIE					1,057		
Subtotal					-	-	48	464	1,366	-	-
		I	or licitar						,		
Tuxpan V	Veracruz	CC	2002	PIE					546		
Hermosillo Conv. TG	Sonora	TG	2002	OPF			83				
Tamazunchale	S.L.P.	CC	2002	PIE						1,046	
Agua Prieta II	Sonora	Libre	2002	PIE						,	469
Carboeléctrica del Pacífico	Bajío	Dual	2002	OPF						700	
Valladolid III	Yucatán	CC	2002	PIE					524		
El Cajón	Nayarit	HID	2002	OPF						750	
Subtotal					-	-	83	-	1.070	2,496	469
		Plan d	e continge	encia						_,	
El Sauz (complemento CC)	Querétaro		CC 2001	OPF		139					
El Sauz (complemento CC, operando)	Querétaro		CC 2001	RP	133						
El Encino (Chihuahua III, operando)	Chihuahua	TG	2001	RP	134						
Subtotal					267	139	_	_	_	_	
Total capacidad comprometida					2,577	3,974	1,267	1.010	2,436	2,496	469
					-,-,-	-,-,-	-,	-,525	_,.00	_, ., 0	,

HID: Hidroeléctrica CC: Ciclo combinado CD: Combustión interna tipo diesel GEO: Geotérmica PIE: Productor Independiente de Energía CAT: Construir, Arrendar, Transferir RP: Recursos Propios OPF: Obra Pública Financiada.

Nota: Las cifras están redondeadas a números enteros, por lo que los totales podrían no corresponder exactamente a las sumas. Fuente: Comisión Federal de Electricidad.

Capacidad comprometida

En el cuadro 18 se presentan las unidades generadoras que componen la capacidad en construcción o comprometida. De la capacidad total, 80% se construirá con tecnología de ciclo combinado¹6 y 13% con base en fuentes renovables. Los proyectos en construcción para 2002 se encuentran ya en operación comercial (16% de la capacidad comprometida).

El esquema de PIE representará 63% de la capacidad total comprometida o en construcción en los próximos años. En la zona del Golfo de México se ubica la mayor capacidad en construcción a base de ciclos combinados, conforme a la extensión del sistema de ductos.

Capacidad adicional no comprometida

Los estudios de la expansión del Sistema determinan los requerimientos de capacidad adicional de generación no comprometida. Estos son susceptibles de satisfacerse con inversión privada mediante las licitaciones correspondientes.

Con ello, se da apertura a otras opciones de generación que minimicen el costo total de largo plazo, con la calidad y confiabilidad que requiere el sistema. Para ello, se ha estimado una capacidad no comprometida de 14,634 MW, y considerando los 14,228 MW de capacidad comprometida, la capacidad adicional total estimada del servicio público es de 28,862 MW en el 2011 (cuadro 19 y 20).

Cuadro 19
Requerimientos de capacidad adicional no comprometida
(proyectos con esquema financiero por definirse)

			Fecha del						
Proyecto	Ubicación	Tipo	concurso*		Capac	idad bru	ta en siti	o, MW	
				2006	2007	2008	2009	2010	2011
Baja California Sur II, III, IV	Baja California Sur	Libre	2003	38		38		38	
Río Bravo V (Matamoros II)	Tamaulipas	Libre	2003				550		
Tamazunchale II	S.L.P.	Libre	2003			1,046			
Tamazunchale III	S.L.P.	Libre	2003				523		
Conv. El Encino	Chihuahua	VAP/CC	2003	62					
Agua Prieta III	Sonora	Libre	2002				469		
Agua Prieta IV	Sonora	Libre	2004					469	
Eólica	Oaxaca	EOL	2002	50					
Carboeléctrica Pacífico II, III, IV	Bajío	Dual	2004				700	700	1,400
Sta. Rosalía (Guerrero Negro III)	Baja California Sur	CD	2003				10		
Baja California II - V	Baja California	Libre	2003			368	368	368	368
Samalayuca IV (Norte I y II)	Durango	Libre	2003			456			
La Parota	Guerrero	HID	2003					765	
Central	Edo. México	Libre	2003					550	
Boca del Cerro	Chiapas	HID	2003						560
Norte III, IV	Chihuahua	Libre	2005				440		
Norte V, VI	Chihuahua	Libre	2005					450	
Coatzacoalcos I y II	Veracruz	Libre	2006				550	550	
Noreste	Sonora	Libre	2006						550
Oriental I, II y III	Veracruz	Libre	2006				550	550	550
Peninsular	Quintana Roo	Libre	2006						550
Total capacidad no comprometida				150	-	1,908	4,160	4,440	3,978
Acumulado				150	150	2,057	6,217	10,656	14,634
Capacidad comprometida									14,228
Total de adiciones del SEN 2002 -	2011:								28,862

 $^{^{\}star}/$ Se indica la fecha correspondiente a la primera central programada.

HID: Hidroeléctrica CC: Ciclo combinado CD: Combustión interna con diesel EOL: Eólica

Fuente: Comisión Federal de electricidad

¹⁶ Suponiendo la tecnología Libre a base de gas natural.

Cuadro 20 Programa de adiciones de capacidad de generación, MW

Capacidad adicional	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	Total
Total	3,055	4,684	1,267	1,010	2,836	2,496	2,377	4,160	4,440	3,978	30,300
Servicio Público	2,577	3,974	1,267	1,010	2,586	2,496	2,377	4,160	4,440	3,978	28,862
Comprometida	2,577	3,974	1,267	1,010	2,436	2,496	469	-	-	-	14,228
No comprometida	-	-	-	-	150	-	1,908	4,160	4,440	3,978	14,634
Autoabastecimiento*	478	710	-	-	250	-	-	-	-	-	1,438

Fuente: Comisión Federal de Flectricidad

Nota: Las cifras están redondeadas, por lo que los totales podrían no corresponder exactamente

Los inversionistas tienen la libertad de proponer una ubicación específica diferente a la programada, aun cuando esto involucre transmisión adicional para llegar al punto de interconexión preferente. Asimismo, éstos son libres de proponer el tipo de tecnología a utilizar en el desarrollo de sus proyectos de generación.¹⁷

Considerando la expansión total de capacidad del servicio público (28,862 MW), se observa que 40.6% se instalará en la zona del Golfo de México (utilizando como combustible básico gas natural), 17.7% será construida en la región del pacífico (consumiendo principalmente carbón, como combustible para generación eléctrica), y 11.4% en la frontera norte del país (se estima que serán centrales de ciclo combinado).

Capacidad retirada del Sistema

El programa de expansión también considera los retiros acumulados de capacidad, sustentados en los costos de operación y en la vida útil de las unidades generadoras. ¹⁸ La capacidad a retirar en los próximos 10 años es de 4,168 MW.

El programa de retiros no es definitivo, como es normal en los sistemas eléctricos, es necesario considerar un análisis costobeneficio de la problemática regional del momento, caso por caso, que permita elegir la decisión más favorable para cada unidad. Las opciones son: conservar la central como reserva, rehabilitarla, modernizarla o retirarla del servicio.

Con base en el programa de expansión de centrales en proceso de construcción, de las adiciones no comprometidas y de los retiros de capacidad, se espera que al final del horizonte de esta prospectiva se alcancen los 63,214 MW en el SEN. Con la entrada en operación de todos los proyectos de Pemex, la cifra alcanzaría los 62,080 MW (cuadro 21).

Cuadro 21
Evolución esperada de la capacidad instalada del Sistema Eléctrico Nacional

Capacidad adicional	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
Capacidad 2001	38,519	38,519	38,519	38,519	38,519	38,519	38,519	38,519	38,519	38,519
Adiciones acumuladas	2,577	6,551	7,817	8,827	11,413	13,909	16,284	20,444	24,884	28,862
Retiros	-	150	333	467	467	561	1,694	2,651	3,488	4,168
Capacidad a diciembre de cada año	41,095	44,918	46,002	46,877	49,463	51,865	53,109	56,312	59,916	63,214

Fuente: Comisión Federal de Electricidad.

^{*/}Considera únicamente autoabastecimiento remoto

¹⁷ El *Artículo 125* del Reglamento de la LSPEE establece que las convocatorias y las bases de licitación, deberán plantearse en tal forma que permitan a todos y cada uno de los interesados expresar con flexibilidad el contenido de sus propuestas, respecto a la tecnología, combustible, diseño, ingeniería, construcción y ubicación de las instalaciones. Este ordenamiento también define que habrá casos en que, por razones justificadas, la Sener determine que en la convocatoria y en las bases de licitación se señalen especificaciones precisas en cuanto al tipo de combustible que se utilizará para la generación.

¹⁸ Considerando una vida útil de 30 años para termoeléctricas convencionales y 25 para las turbogas.

Capacidad adicional por regiones estadísticas de Presidencia

En el cuadro 22, se aprecia la capacidad adicional por tipo de tecnología y por región estadística, donde se observa que en la región Sur-Sureste se ubica la mayor capacidad de generación. Lo anterior en virtud de que en ésta, se concentran los mayores recursos hidrológicos del país. Esta región aportará 40.0% de la capacidad al SEN al año 2011, porcentaje superior en 3.7 puntos porcentuales respecto a 2001.

La segunda región en importancia es la Noreste que contribuirá con 22.8% de la capacidad instalada total. En esta área se encuentran la mayoría de las centrales a base de turbinas de gas de ciclo combinado (Samalayuca, Saltillo, El Encino, etc.). Esta tecnología crecerá en 13% promedio anual, dentro de la región. Cabe señalar que aquí se localizan dos de las tres centrales carboeléctricas del país.

cuadro 22 Evolución de la capacidad instalada por tecnología y región estadística, MW

Tipo	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
Total	38,519	41,095	44,918	46,002	46,877	49,463	51,865	53,109	56,311	59,915	63,214
Subtotal Noroeste	6,196	6,197	6,969	7,049	7,038	7,385	7,315	8,022	8,561	9,340	9,392
Hidráulica	941	941	941	941	941	941	941	941	941	941	941
Ciclo combinado	725	725	1,497	1,580	1,580	1,889	1,889	1,889	1,889	1,889	1,889
Turbogas	768	768	768	768	768	768	768	768	768	678	678
Combustión interna	137	137	137	175	164	164	164	164	167	160	160
Eólica	1	1	1	1	1	1	1	1	1	1	1
Libre	-	-	-	-	-	38	38	913	1,750	2,625	2,993
Combustóleo	2,895	2,895	2,895	2,855	2,855	2,855	2,785	2,617	2,317	2,317	2,001
Geotermia	730	730	730	730	730	730	730	730	730	730	730
Subtotal Noreste	8,443	10,118	11,302	11,814	12,785	13,904	13,880	14,012	14,502	14,212	14,398
Hidráulica	126	126	126	126	126	126	126	126	126	126	126
Ciclo combinado	2,220	3,761	5,095	5,607	6,617	7,736	7,736	7,736	7,536	7,536	7,536
Turbogas	708	842	842	842	842	842	818	818	818	818	754
Libre	-	-	-	-	-	-	-	456	1,446	1,896	2,446
Carbón	2,600	2,600	2,600	2,600	2,600	2,600	2,600	2,600	2,600	2,600	2,600
Combustóleo	2,789	2,789	2,639	2,639	2,600	2,600	2,600	2,276	1,976	1,236	936
Subtotal Cto Occ.	5,805	6,449	6,695	6,695	6,695	6,695	8,491	9,537	10,060	10,060	10,060
Hidráulica	1,881	1,881	1,881	1,881	1,881	1,881	2,631	2,631	2,631	2,631	2,631
Ciclo combinado	218	729	868	868	868	868	1,914	1,914	1,914	1,914	1,914
Turbogas	146	279	279	279	279	279	279	279	279	279	279
Combustión interna	1	1	1	1	1	1	1	1	1	1	1
Libre	-	-	-	-	-	-	-	1,046	1,569	1,569	1,569
Combustóleo	3,466	3,466	3,466	3,466	3,466	3,466	3,466	3,466	3,466	3,466	3,466
Geotermia	93	93	200	200	200	200	200	200	200	200	200

Cuadro 22 (Continuación)

Subtotal Centro	3,940	4,197	4,197	4,197	4,197	4,197	4,197	3,673	3,523	4,073	4,073
Hidráulica	695	695	695	695	695	695	695	695	695	695	695
Ciclo combinado	382	639	639	639	639	639	639	639	639	639	639
Turbogas	374	374	374	374	374	374	374	374	374	374	374
Libre	-	-	-	-	-	-	-	-	-	550	550
Combustóleo	2,474	2,474	2,474	2,474	2,474	2,474	2,474	1,950	1,800	1,800	1,800
Geotermia	15	15	15	15	15	15	15	15	15	15	15
Subtotal Sur-Sureste	14,131	14,131	15,752	16,243	16,159	17,279	17,979	17,862	19,662	22,227	25,287
Hidráulica	5,976	5,976	6,288	6,912	6,912	6,912	6,912	6,912	6,912	7,677	8,237
Ciclo combinado	1,643	1,643	2,952	2,952	2,952	4,022	4,022	4,022	4,022	4,022	4,022
Turbogas	385	385	385	385	385	385	385	385	385	385	385
Combustión interna	2	2	2	2	2	2	2	2	2	2	2
Dual	2,100	2,100	2,100	2,100	2,100	2,100	2,800	2,800	3,500	4,200	5,600
Eólica	2	2	2	2	2	52	52	52	52	52	52
Libre	-	-	-	-	-	-	-	-	1,100	2,200	3,300
Combustóleo	2,659	2,659	2,659	2,526	2,442	2,442	2,442	2,325	2,325	2,325	2,325
Nuclear	1,365	1,365	1,365	1,365	1,365	1,365	1,365	1,365	1,365	1,365	1,365
Plantas móviles	3	3	3	3	3	3	3	3	3	3	3

Fuente: Comisión Federal de Electricidad.

Debido al redondeo de cifras los totales pudieran no corresponder exactamente

La región Centro-occidente participó con el 15% de la capacidad instalada total en el 2001, se estima que al cierre del periodo de estudio su participación se incremente en un punto porcentual. Esta región cuenta con el segundo desarrollo hidroeléctrico y geotérmico de México, que en conjunto aportarán 21% de la capacidad instalada renovable en el 2011.

Por su parte, la región Noroeste donde se encuentran los sistemas eléctricos aislados del país, desarrollará capacidad importante a base de ciclos combinados, aprovechando el mercado de gas natural en la frontera con EUA, mediante la red de interconexión de gasoductos. Considerando la capacidad libre como ciclo combinado, su participación en la capacidad instalada nacional crecerá de 1.9% en el 2001 a 7.7% al final del periodo.

A fin de fortalecer la región Centro, LFC cuenta con estudio de factibilidad para la instalación de centrales de ciclo combinado en la región de Toluca (El Cerrillo), Zumpango y Beristain. Adicionalmente, se estudia la repotenciación de la central termoeléctrica Jorge Luque, de las centrales hidroeléctricas de Necaxa, Tepexic y Patla, así como de las unidades turbogas de Nonoalco, Lechería y Valle de México.

4.3.2.1 Participación de las tecnologías de generación en la expansión del SEN

La capacidad adicional requerida en el futuro se obtendrá con una combinación de las tecnologías disponibles. La combinación óptima, será la que permita satisfacer la demanda prevista a un costo mínimo, con el nivel de confiabilidad requerido, y que satisfaga los lineamientos de política energética nacional establecidos en el Programa Sectorial de Energía 2001-2006, y la normatividad ambiental.

Los estudios de planeación indican que la estrategia de expansión que minimiza los costos, considera una participación mayoritaria de proyectos de generación con centrales identificadas como Libres (los participantes confirman o proponen la tecnología y el combustible por utilizar) con 37.6%, seguido por las centrales de ciclo combinado (37.4%), las centrales duales (utilizan carbón o combustóleo) 12.1% y la hidroelectricidad con 10.4% (cuadro 23).

Cuadro 23 Capacidad adicional por tecnología (MW), 2002-2011

Tecnología	Comprometida	No	Total	Participación		
		comprometida		porcentual		
Ciclo combinado	10,744	62	10,806	37.4		
Repotenciación	257	-	257	0.9		
Hidroeléctrica	1,686	1,325	3,011	10.4		
Dual	700	2,800	3,500	12.1		
Geotermia	107	-	107	0.4		
Turbogas	217	-	217	0.8		
Combustión Interna	48	10	58	0.2		
Eólica	-	50	50	0.2		
Libre	469	10,387	10,856	37.6		
Total	14,228	14,634	28,862	100		

Fuente: Comisión Federal de Electricidad

4.3.3 Importación y exportación de energía eléctrica

La estimación de los requerimientos de capacidad, considera los compromisos actuales y previstos de exportación e importación de energía eléctrica, en el corto y largo plazos, de acuerdo con los estudios realizados por CFE. Con excepción de los enlaces de Baja California con el sur de California en los EUA, los sistemas eléctricos se han desarrollado para suministrar sus propias cargas y no para realizar transacciones de energía de magnitud importante

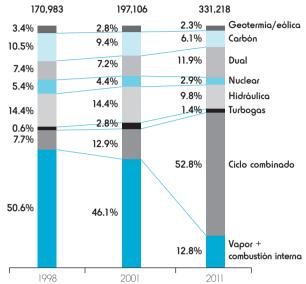
Importación

 En el Sistema de Baja California se tiene un contrato de capacidad firme y energía asociada, por 150, 200 y 100 MW en los meses de julio, agosto y septiembre de 2002, respectivamente. Para el área Noreste se contrató capacidad firme de 150 MW y energía asociada en el mes de junio. En el área Norte se importaron 100 MW en los meses de junio y julio de 2002.

Exportación

La exportación de energía eléctrica básicamente se realiza en la frontera sur del país, con Belice. Dentro del periodo de estudio prospectivo, se estima que las exportaciones ascenderán a 557 MW anuales.

Al cierre de agosto del 2002, se habían exportado 155 MW. Actualmente se estudia la factibilidad para suministrar electricidad a Centroamérica.


4.3.4 Evolución esperada del sistema de generación

Con el programa de expansión previsto, se espera que la generación bruta en el SEN pasará de 197.1 TWh en 2001 a 331.2 TWh en 2011 (gráfica 22).

Para cuantificar las estimaciones de generación y consumo de combustibles fósiles en el periodo 2001-2011, se ha supuesto que la capacidad de tipo Libre (descontando la capacidad programada de Baja California Sur) utiliza gas natural. Conside-

rando los planes de desarrollo previstos, la participación de las plantas de ciclo combinado aumentaría de 12.9% a 52.8% en el periodo señalado, mientras la participación de las unidades térmicas convencionales, reduciría su participación de 46.1% en 2001 a 12.8% al final del periodo.

Gráfica 22 SEN: Pronóstico de la generación bruta (GWh)

Fuente: Comisión Federal de Electricidad

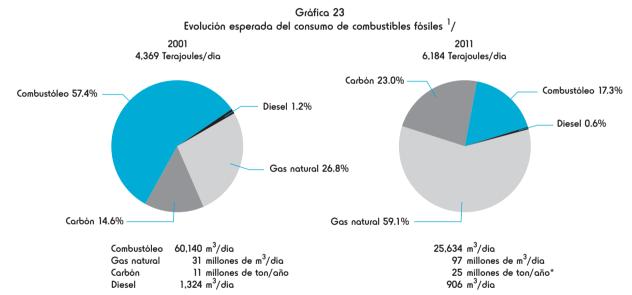
Con la entrada en operación de los proyectos de Pemex, la generación producida por el servicio público al final del horizonte se reducirá. Por región, se observa que la Centro, en ambas opciones, tendrá que importar energía de las zonas vecinas, puesto que su capacidad de generación es insuficiente para atender su demanda (cuadro 24).

Cuadro 24
SEN: Pronóstico de generación de energía eléctrica por región estadística, GWh

Región	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
Total	197,106	201,821	211,658	220,400	232,345	245,305	259,929	275,872	293,459	311,964	331,218
Noroeste	25,794	25,998	27,198	28,308	29,132	31,267	31,809	34,567	36,707	39,947	43,139
Noreste	49,934	55,811	59,457	63,431	74,729	79,732	85,336	89,825	93,991	93,869	94,852
Centro - Occidente	30,065	30,795	32,596	27,368	27,961	29,867	35,826	44,160	48,661	49,799	48,104
Centro	22,008	22,294	23,197	19,846	19,004	16,868	13,166	13,309	12,940	13,629	12,676
Sur - Sureste	69,305	66,922	69,212	81,446	81,519	87,571	93,792	94,012	101,160	114,721	132,446

Fuente: Comisión Federal de Electricidad

4.3.5 Evolución del consumo de combustibles en la industria eléctrica


Para generar la energía bruta en el 2001, se consumieron 60.1 mil metros cúbicos diarios de combustóleo, 1,323.6 metros cúbicos diarios de diesel, 31.2 millones de metros cúbicos diarios de gas natural y 11.4 millones de toneladas de carbón al año.

Al considerar las normas ambientales, así como la oferta y la evolución de los precios relativos para gas natural y combustóleo, se estima que para el año 2011, el consumo de combustibles fósiles asociado al programa de expansión, evolucionará de la siguiente manera: 25.6 mil metros cúbicos diarios de combustóleo, 905.9 metros cúbicos diarios de diesel, 97.4 millones de metros cúbicos diarios de gas natural (crecimiento de 12.1% medio anual durante el periodo), y 25.1 millones de toneladas de carbón (con un incremento de 8.2% medio anual), ver cuadro 25.

El proceso de selección general de sitios para ubicar las centrales de ciclo combinado, es preferentemente en las cercanías del gasoducto que va de Ciudad Pemex hacia la frontera noreste del país (a lo largo de toda la costa este), por ser el más importante en cuanto a capacidad de transporte del hidrocarburo.

Respecto a la importación de gas natural, la ubicación de las centrales generadoras se orienta hacia la frontera norte, en zonas donde existe la posibilidad de transportar gas de las cuencas de EUA.

La situación planteada anteriormente, convierte a las áreas del centro del país y de la costa del Pacífico en importadoras de energía eléctrica. Lo cual requiere de un robusto y confiable sistema de transmisión de energía de este a oeste y de norte a sur.

^{1/} Se refiere al consumo en centrales del sector público y PIE.

Cuadro 25 SEN: Pronóstico del consumo de combustibles para generación de electricidad (Terajoules/día)

												tmca %
	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	Total	2002-2011
Total	4,293	4,442	4,081	4,385	4,722	4,869	5,203	5,534	5,878	6,184	49,592	3.5
Combustóleo	2,184	1,730	1,457	1,472	1,565	1,412	1,376	1,262	1,179	1,069	14,706	-8.2
Gas natural	1,420	1,823	1,795	2,018	2,260	2,462	2,813	3,178	3,463	3,656	24,886	12.1
Diesel	27	34	31	31	27	31	27	28	31	35	302	-3.7
Carbón	662	856	798	864	870	965	988	1,067	1,205	1,425	9,698	8.3

Fuente: Comisión Federal de Electricidad

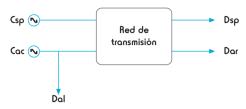
 $^{^{\}star}$ / Considera que el 100% de la energía generada en la central de Petatalco se produce con carbón

^{**/} Supone que la tecnología Libre, se abastezca de gas natural como combustible de generación. Fuente: Comisión Federal de Electricidad.

El efecto de los proyectos de Tula y Salamanca sobre el consumo de combustibles para generación eléctrica del servicio público, sería el incremento en el consumo de combustóleo y disminución en los demás hidrocarburos (sobre todo en el diesel). Lo anterior, debido a los consumos de gas natural esperados en las centrales de autogeneración de Pemex.

4.3.6 Autoabastecimiento y cogeneración

Hasta ahora, las plantas privadas de autoabastecimiento y cogeneración han tenido poca influencia en la planeación y operación del SEN, debido a que, en general:


- Los esquemas de compra-venta de energía eléctrica excedente a CFE o LFC, no implican compromisos de largo plazo, ni existe obligación de dichos organismos de comprar la energía eléctrica de los permisionarios;
- La Ley del Servicio Público de Energía Eléctrica no permite la compraventa de electricidad entre particulares, por lo que los autoabastecedores y cogeneradores no puede comercializar libremente sus excedentes de energía, y
- Parte de su carga es alimentada en forma regular por el SEN, mediante contratos de suministro.

Se espera que cambie esta situación en los próximos años, ya que se tiene programada la entrada en operación de diversas plantas de cogeneración y autoabastecimiento de capacidad importante, algunas de las cuales han solicitado los servicios de transmisión y respaldo a CFE y LFC. Para proporcionar estos servicios es necesario instalar reserva adicional de generación y realizar ajustes en el programa de expansión de la red de transmisión.

La siguiente lámina, presenta de manera ilustrativa los elementos del enfoque de planeación; considerando por el lado de la oferta, la capacidad de las plantas destinadas al servicio público y las de centrales de autoabastecimiento y cogeneración. Por el lado de la demanda, se incluyen los requisitos de los usuarios del servicio público y la demanda de los autoabastecedores y cogeneradores, con dos componentes:

 Demanda remota (Dar): corresponde a las cargas ubicadas en sitios alejados de la central generadora, las cuales son alimentadas mediante la red de transmisión. Demanda local (Dal): corresponde a la carga que se encuentra ubicada en el mismo sitio de la central generadora.

Elementos que intervienen en la elaboración del programa de expansión

Csp = Capacidad de plantas para el servicio público

Cac = Capacidad de plantas de autoabastecimiento y cogeneración (privado)

Dsρ = Demanda de usuarios del servicio público

Dar = Demanda autoabastecida en forma remota (porteo)

Dal = Demanda autoabastecida en forma local

Fuente: Comisión Federal de Electricidad.

Con objeto de reflejar el impacto de los proyectos de autoabastecimiento y cogeneración en la expansión del SEN, se estimó caso por caso, el valor de la demanda máxima anual de la carga local y de las cargas remotas. Posteriormente, estos valores se agregaron a las demandas máximas del servicio público de las regiones correspondientes, y de igual manera, se estimó el valor del consumo anual de las cargas locales y remotas.

La evolución de la capacidad instalada de las cargas alimentadas con plantas de autoabastecimiento y cogeneración se presenta en el cuadro 26, el total de esta capacidad incluye carga local y carga remota (capacidad que ingresa al SEN). La capacidad existente, el programa de proyectos y el consumo se estimaron a partir de la información proporcionada por la CRE. 19

El impacto de los proyectos de Pemex modifica la capacidad instalada de generación futura de los proyectos de autogeneración a partir del año 2006, con la disminución probable de la capacidad en Nuevo Pemex (390 MW) y la entrada en operación de Tula y Salamanca en 2008.

¹⁹ Se refiere a los factores de planta declarados en las solicitudes de permiso presentadas a la CRE, y a la información que presentó esta Comisión en las reuniones del Grupo Interinstitucional para la Elaboración de la Prospectiva.

Cuadro 26
Evolución de la capacidad de autoabastecimiento y cogeneración, MW

Empresa	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
Total ^{1/}	3,803	3,892	4,687	5,256	5,256	5,256	5,919	5,839	5,839	5,799	5,799	5,799
Proyectos existentes (sin Pemex)*	1,540	1,611	1,609	1,609	1,609	1,609	1,609	1,609	1,609	1,609	1,609	1,609
Pemex**	2,075	2,060	2,060	2,060	2,060	2,060	2,028	1,948	1,948	1,908	1,908	1,908
PEGI	177	177	25	-	-	-	-	-	-	-	-	-
MICASE	11	11	11	11	11	11	11	11	11	11	11	11
Energía y Agua Pura de Cozumel	-	32	32	32	32	32	32	32	32	32	32	32
Energía Azteca VIII (Intergen)	-	-	131	131	131	131	131	131	131	131	131	131
Enron. Energía Industrial de México (Vitro)	-	-	284	284	284	284	284	284	284	284	284	284
Iberdrola Energía Monterrey	-	-	285	619	619	619	619	619	619	619	619	619
Termoeléctrica del Golfo, (CEMEX)	-	-	250	250	250	250	250	250	250	250	250	250
Termoeléctrica Peñoles	-	-	-	260	260	260	260	260	260	260	260	260
Nuevo Pemex	-	-	-	-	-	-	695	695	695	695	695	695
N	Modifica	ción e i	inclusió	n de pr	oyectos	de Pen	nex					
Nuevo Total	-	-	-	-	-	-	5,529	5,449	6,521	6,481	6,481	6,481
Nuevo Pemex	-	-	-	-	-	-	305	305	305	305	305	305

Fuente: Comisión Federal de Electricidad.

Tula

Salamanca

La capacidad total de autoabastecimiento y cogeneración de 5,799 MW incluye cargas remotas adicionales por un total de 1,438 MW, las cuales son consideradas en el programa de expansión del SEN, en virtud de que éstas ingresan al sistema.

Con las cargas remotas adicionales de autogeneración y sumando la capacidad estimada del servicio público de 63,214 (sin los proyectos de Tula y Salamanca) tendríamos una capacidad instalada de 64,625 MW en el año 2011, conectada al SEN.

Estas adiciones fueron estimadas con base en los resultados del estudio del Grupo de Trabajo de Autogeneración creado por la Sener²⁰ para estos fines. La metodología consistió en:

 Estimar la capacidad instalada considerando los proyectos con permiso de la CRE y aquellos que tiene Pemex en estudio. Aplicar un cuestionario a representantes de las empresas, para conocer si los proyectos contaban con: estudio de factibilidad, permiso de la CRE, cierre financiero, trámites locales y ambientales, adquisición de equipo, avance de la construcción e instalación de equipos, y pruebas de arranque.

478

594

478

594

478

594

478

594

- Con esta información se definió la fecha probable de inicio de operaciones. Posteriormente, se asignaron ponderaciones para estimar la probabilidad de ejecución de los proyectos nuevos y de aquellos asociados a plantas existentes para el periodo 2002-2005.²¹
- Para el periodo de 2006-2011 la proyección considera la suma de la capacidad asociada existente, al potencial con posibilidades de ejecución, más los proyectos de Pemex. Los rangos de probabilidad definidos son:

^{1/}Considera autoabastecimiento local y remoto

^{*/}Se refiere al conjunto de proyectos de autoabastecimiento y cogeneración actuales, que durante el periodo 2002-2011 no adicionan capacidad

^{**/} Incluye retiros de capacidad.

²⁰ A principios de 2002, la Sener creó un Grupo de Trabajo para Autoabastecimiento y Cogeneración (con la participación de la Conae, IIE, IMP, CRE, CFE, Pemex Corporativo, PGPB), con objeto de desarrollar una metodología que pronostique la capacidad instalada, generación de energía eléctrica y consumo de combustibles de estos proyectos.

²¹ No existen bases reales para extender el pronóstico al periodo 2006-2011. Puesto que se puede pronosticar la demanda de energía eléctrica y la capacidad necesaria correspondiente, pero no quien la instalará, ni su ubicación.

- 70%-100% alta probabilidad (asociado al escenario de planeación);
- 50% y menor de 70% probabilidad media, y
- 30% y menor de 50% probabilidad menor.
- Los proyectos con probabilidad inferior al 30% no fueron considerados.
- La generación de energía, consideró por un lado, las estimaciones propias de Pemex en sus proyectos asociados a plantas de producción; en el caso de autogeneradores privados, se utilizó un modelo econométrico de ecuaciones simultáneas. La CFE descuenta la generación del escenario de alta probabilidad de la demanda de la gran industria.
- Los resultados de esta metodología se presentan en los cuadros 26 y 27.

El cuadro 27 muestra el impacto del incremento del consumo de autogeneración, que a su vez, impacta a la baja las ventas totales de electricidad del servicio público.

La ubicación geográfica de las nuevas plantas de autoabastecimiento y cogeneración (principalmente las de Pemex), así como la de sus cargas locales y remotas, tendrá un impacto importante en el margen de reserva del Sistema y en la expansión de la red de transmisión.

Se ha demostrado la viabilidad de formación de sociedades de autoabastecimiento de energía eléctrica entre empresas generadoras y consumidoras del sector privado, con el fin de instalar una planta de generación eléctrica en una ubicación óptima que les permita disminuir los costos de abastecimiento de la energía.

Este tipo de esquemas permite aprovechar los excedentes de energía térmica o de vapor, con los que cuentan algunas industrias para cogenerar energía eléctrica a precios competitivos. Con objeto de hacer factibles proyectos de esta naturaleza, es posible utilizar la infraestructura de transmisión para llevar la electricidad a los centros de consumo, pagando una tarifa de transporte (porteo).

Como ejemplo de lo anterior, se encuentran los proyectos de: Iberdrola Energía Monterrey (PEGI), Termoeléctrica del Golfo y Termoeléctrica Peñoles.

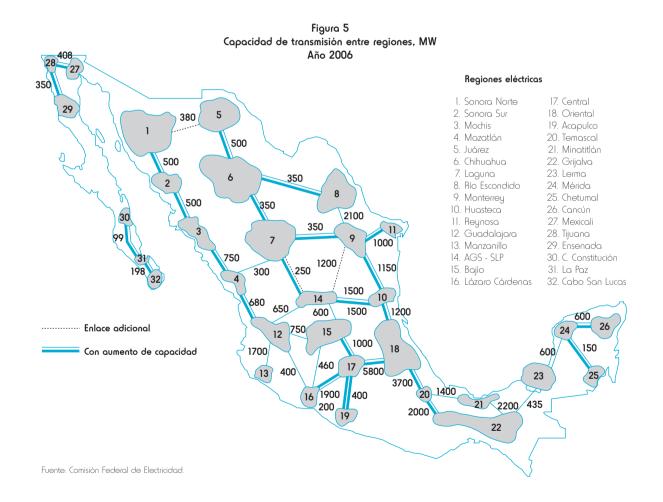
Cuadro 27 Evolución del consumo de Autoabastecimiento y Cogeneración, GWh

Empresa	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
Total 1/	11,027	12,520	14,212	19,937	22,666	23,798	28,340	29,249	29,265	29,377	29,426	29,403
Proyectos existentes (sin Pemex)*	4,667	4,722	4,722	5,041	5,124	5,140	5,172	5,259	5,185	5,285	5,276	5,266
Pemex	5,888	7,401	7,401	7,470	7,594	7,617	7,532	7,305	7,202	7,139	7,127	7,114
PEGI	439	309	309	-	-	-	-	-	-	-	-	-
MICASE	33	52	52	53	53	54	54	55	54	55	55	55
Energía y Agua Pura de Cozumel	-	37	37	37	38	38	38	39	38	39	39	39
Energía Azteca VIII (Intergen)	-	-	332	795	864	960	992	971	982	987	991	991
Enron. Energía Industrial de México (Vitro)	-	-	173	1,866	2,028	2,253	2,329	2,279	2,306	2,316	2,325	2,325
Iberdrola Energía Monterrey	-	-	515	2,978	3,742	4,157	4,297	4,205	4,254	4,273	4,291	4,291
Termoeléctrica del Golfo, (CEMEX)	-	-	671	1,444	1,570	1,744	1,802	1,764	1,784	1,792	1,800	1,800
Termoeléctrica Peñoles	-	-	-	253	1,653	1,836	1,898	1,857	1,879	1,887	1,895	1,895
Nuevo Pemex	-	-	-	-	-	-	4,227	5,516	5,580	5,605	5,628	5,628
Nuevo Total	-	-	-	-	-	-	25,717	25,996	30,830	33,391	33,614	33,930
Nuevo Pemex	-	-	-	-	-	-	1,604	2,263	2,202	2,333	2,349	2,366
Tula	-	-	-	-	-	-	-	-	2,385	3,240	3,340	3,520
Salamanca	-	-	-	-	-	-	-	-	2,559	4,046	4,127	4,296

Fuente: Comisión Federal de Electricidad.

^{1/} Considera autoabastecimiento local y remoto.

4.3.7 Evolución esperada de la red de transmisión


Las adiciones de capacidad de transmisión necesarias para abastecer la demanda esperada a costo mínimo, se determinan aplicando los siguientes criterios:

- Seguridad.- posibilidad de mantener operando en sincronismo las unidades generadoras inmediatamente después de una contingencia crítica de generación o transmisión.
- *Calidad*.- posibilidad de mantener el voltaje y la frecuencia dentro de los rangos aceptables.
- Confiabilidad.- reducción del valor esperado de la energía que no es posible suministrar, debido a posibles fallas de los elementos del sistema.

 Economía de la operación.- reducción de los costos de operación del sistema eléctrico.

Los modelos probabilísticos y determinísticos permiten calcular costos de producción y parámetros del comportamiento eléctrico de la red, en régimen estable y dinámico, así como índices de confiabilidad. Los estudios determinísticos analizan el comportamiento del sistema en diversos estados de la carga y disponibilidad de los equipos de generación y transmisión.

Estos estudios consideraron el estado actual de la red de transmisión y el programa de expansión del sistema de generación, lo que permitió diseñar un programa para el periodo 2002-2006 (figura 5), en el que se incorporan al sistema 20,537 km de líneas de transmisión en niveles de tensión de 69 a 400 kV y 40,256 MVA en subestaciones reductoras.

El programa de la red de transmisión contiene los proyectos definidos al nivel de factibilidad técnica y económica para el periodo 2007-2011. Este programa de transmisión se estima con menor precisión, dada la posibilidad de cambios relativos en el crecimiento de la demanda regional y de ajustes en la ubicación de las centrales.

Las principales obras de transmisión y transformación consideradas para el periodo 2002-2006, así como, la capacidad de transmisión y la potencia transmitida, (bajo una condición de demanda máxima del sistema) se presentan en los cuadros 28 y 29. La utilización máxima de los enlaces se presenta cuando ocurren los mantenimientos de las unidades generadoras y la salida forzada de éstas o de otros elementos de la red de transmisión.

Cuadro 28 SEN: Expansión de la capacidad de transmisión (MW), 2002-2006

Enlace	e	Nivel de	Capacidad	Aumento de	Capacidad
Región	Región	tensión Kv	inicial 2001	Capacidad	Total
Sonora norte	Sonora sur	230	330	170	500
Sonora norte	Juárez	400*		380*	380
Sonora sur	Mochis	400*, 230	220	280	500
Laguna	Chihuahua	230	235	115	350
Laguna	Monterrey	400, 230	260	90	350
Laguna	Aguascalientes-SLP	230		250*	250
Chihuahua	Juárez	230	250	250	500
Río Escondido	Chihuahua	400	225	125	350
Monterrey	Reynosa	400, 230	350	650	1,000
Monterrey	Aguascalientes-SLP	400		1200*	1,200
Bajío	Central	400, 230	750	250	1,000
Huasteca	Aguascalientes-SLP	400		1,500	1,500
Huasteca	Oriental	400	750	450	1,200
Huasteca	Bajío	400		1,500*	1,500
Temascal	Grijalva	400	1,000	1,000	2,000
Oriental	Central	400, 230	4,000	1,800	5,800
Oriental	Temascal	400, 230	2,100	1,800	3,700
Monterrey	Huasteca	400	900	250	1,150
Mazatlán	Guadalajara	400	320	360	680
La Paz	Cabo San Lucas	115	140	58	198
Mérida	Cancún	400*,230,115	300	300	600
Cd. Constitución	La Paz	115	90	9	99
Tijuana	Ensenada	230	180	170	350
Lázaro Cárdenas	Acapulco	400*		200*	200
Mexicali	Tijuana	230	340	68	408

Fuente: Comisión Federal de Electricidad.

^{*} Enlace nuevo.

Cuadro 29 SEN: Capacidad de Transmisión de los enlaces entre regiones eléctricas, MW (bajo condiciones de demanda máxima del sistema)

Enl	ace	Tensión	2	2002	20	03	20	004	20	005	2	006
Región	Región	KV	Flujo	CT								
Sonora norte	Sonora sur	230	256	330	232	330	490	500	470	500	450	500
Sonora norte	Juárez	400*					202	380	232	380	264	380
Sonora sur	Mochis	400*, 230	220	220	215	220	480	500	440	500	400	500
Mazatlán	Mochis	400*, 230	400	750	448	750	180	750	240	750	300	750
Mazatlán	Laguna	400*, 230	140	300	140	300	120	300	133	300	150	300
Mazatlán	Guadalajara	400	55	320	109	320	282	680	230	680	180	680
Chihuahua	Juárez	230	250	250	413	424	424	500	458	500	458	500
Laguna	Chihuahua	230	180	235	235	235	192	350	218	350	225	350
Laguna	Monterrey	400, 230	190	260	219	260	91	260	113	350	104	350
Laguna	Ags-SLP ^{1/}	230			113	250	164	250	179	250	153	250
Río Escondido	Chihuahua	400	85	225	75	225	92	350	87	350	115	350
Río Escondido	Monterrey	400, 230	1,840	2,100	1,645	2,100	1,598	2,100	1,572	2,100	1,758	2,100
Monterrey	Reynosa	400 , 230	265	350	314	350	774	1,000	1,000	1,000	1,000	1,000
Monterrey	Huasteca	400	351	900	836	900	800	1,150	842	1,150	800	1,150
Monterrey	Ags-SLP	400					568	568	568	1,200	1,120	1,200
Huasteca	Oriental	400	357	750	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,200
Manzanillo	Guadalajara	400 ,230	1,317	1,700	1,260	1,700	1,302	1,700	1,293	1,700	1,281	1,700
Guadalajara	Ags-SLP	400	451	650	324	650	157	650	281	650	195	650
Guadalajara	Bajío	400 , 230	576	750	345	750	580	750	564	750	447	750
Bajío	Ags-SLP	230	277	600	483	600	521	600	595	600	517	600
Lázaro Cárdenas	Bajio	400	385	460	405	460	368	460	215	460	204	460
Lázaro Cárdenas	Guadalajara	400	358	400	242	400	173	400	199	400	151	400
Bajío	Central	400 , 230	466	1,000	287	1,000	250	1,000	253	1,000	595	1,000
Lázaro Cárdenas	Central	400	1,500	1,900	1,731	1,900	1,785	1,900	1,729	1,900	1,714	1,900
Oriental	Central	400 , 230	4,800	5,100	5,344	5,800	5,234	5,800	5,502	5,800	5,418	5,800
Acapulco	Central	230	145	400	156	400	184	400	187	400	152	400
Oriental	Temascal	400 , 230	2,100	2,100	2,504	3,700	3,521	3,700	3,009	3,700	2,892	3,700
Grijalva	Lerma	400*, 230	280	435	269	435	114	435	110	435	240	435
Temascal	Grijalva	400	632	1,000	1,481	2,000	1,727	2,000	1,619	2,000	1,581	2,000
Minatitlán	Grijalva	400	1,995	2,200	1,784	2,200	1,982	2,200	1,885	2,200	1,826	2,200
Temascal	Minatitlán	400	1,000	1,400	1,350	1,400	1,400	1,400	1,352	1,400	1,285	1,400
Lerma	Mérida	400 *, 230 , 115	75	600	146	600	200	600	283	600	151	600
Mérida	Cancún	400*,230 , 115	255	300	290	300	310	600	345	600	165	600
Mérida	Chetumal	230 , 115	95	150	100	150	110	150	116	150	124	150
Mexicali	Tijuana	230	216	340	271	340	271	408	263	408	241	408
Tijuana	Ensenada	230	146	180	188	350	214	350	231	350	241	350
C. Constitución	La Paz	115	70	99	70	99	69	99	85	99	58	99
La Paz	Cabo S. Lucas	115	79	198	104	198	104	198	107	198	116	198
Lázaro Cárdenas	Acapulco	400*	170	200	174	200	174	200	190	200	194	200
Huasteca	Ags-SLP	400	400	400	750	750	1,100	1,500	1,432	1,500	1,500	1,500
Huasteca	Bajío	400									1,400	1,500

 $^{1/}$ En 2001 y 2002 se opera abierto. 400* : Lineas de transmisión aisladas para 400 kV, que operan inicialmente a 230 kV.

Fuente: Comisión Federal de Electricidad.

4.4 Requerimientos de inversión del Sector Eléctrico

La inversión programada en el sector eléctrico para satisfacer el crecimiento previsto de la demanda de 5.6% anual, en los próximos diez años, se presenta en el cuadro 30. Se Especifican los requerimientos de inversión para generación, transmisión, distribución y mantenimiento.

Se estima que para el periodo 2002-2011 será necesario invertir 586 mil millones de pesos del 2002, desglosados como sigue: 38% para proyectos de generación, 25% en infraestructura de la red de transmisión, 22% en la red de distribución, 14% en obras de mantenimiento, y 1% en otras inversiones.

De concretarse los proyectos de Pemex, la inversión del servicio público se difiere en cerca de 4,160 millones de pesos, reduciéndose en los rubros de generación y mantenimiento.

El sector eléctrico demanda inversiones crecientes durante los próximos años, superiores a las históricamente observadas. La inversión financiada bajo la modalidad Pidiregas de Obra Pública Financiada (OPF), representará 53% del total de requerimientos financieros del periodo 2002-2011.

En el renglón de generación, los proyectos de inversión privada representarán 99% de la inversión total. Prácticamente, CFE y LFC concentrarán sus inversiones en los proyectos de transmisión, distribución y otras inversiones.

De esta forma, se confirma el carácter relevante que deberá jugar la inversión privada, nacional o extranjera, en la expansión del SEN. Por lo cual, es necesario brindar la certidumbre jurídica adecuada para atraer estos recursos al país.

Cuadro 30

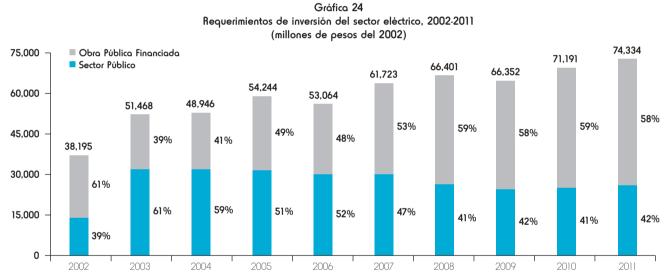
Sector Eléctrico Nacional

Requerimientos de Inversión 2002-2011 (millones de pesos del 2002) 1/

(Obra Presupuestaria, Obra Públicada Financiada y Producción Independiente)

Concepto	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	Total
Total	38,195	51,468	48,946	54,244	53,064	61,723	66,401	66,352	71,191	74,334	585,918
Generación	13,817	9,013	11,014	18,317	16,350	23,069	29,774	29,954	34,008	34,424	219,740
Inversión Privada	13,047	8,647	10,891	18,213	16,289	23,023	29,723	29,906	33,967	34,407	218,113
Hidroeléctricas (OPF)	1,121	2,187	2,567	3,046	3,126	3,078	2,847	2,070	1,034	171	21,248
Geotermoeléctricas (OPF)	407	-	-	-	-	-	-	-	-	-	407
Ciclos Combinados (PIE)	10,542	5,173	5,975	9,199	7,938	12,421	15,329	12,619	9,784	11,137	100,116
Ciclos Combinados (OPF)	899	701	365	337	9	-	-	-	-	-	2,310
Duales (OPF)	-	-	1,819	4,672	5,135	7,060	11,328	14,732	23,144	23,099	90,989
Eólicas (OPF)	-	-	50	494	-	-	-	-	-	-	544
Termoeléctricas (OPF)	77	587	116	465	82	465	218	484	5	-	2,498
Sector Público	770	367	123	104	61	45	51	47	41	16	1,626
Transmisión	13,637	20,106	12,569	12,131	13,000	13,326	14,579	14,637	14,827	15,485	144,297
Inversión Privada (OPF)	8,060	9,102	4,538	5,203	6,352	6,404	6,813	6,330	6,278	6,206	65,287
Sector Público	5,576	11,004	8,031	6,928	6,649	6,922	7,766	8,307	8,549	9,279	79,010
Distribución	6,367	14,886	16,771	15,207	14,891	15,498	11,487	10,665	10,342	11,008	127,122
Inversión Privada (OPF)	2,231	2,327	4,600	3,006	2,762	3,196	2,574	2,243	2,007	2,340	27,287
Sector Público	4,136	12,559	12,172	12,201	12,129	12,302	8,913	8,422	8,335	8,668	99,836
Mantenimiento	3,285	5,980	7,100	7,089	7,314	8,321	9,043	9,569	10,478	11,873	80,054
Otras Inversiones	1,090	1,482	1,491	1,499	1,508	1,509	1,518	1,527	1,536	1,545	14,705

^{1/} Se refiere a los costos instantáneos de las obras (excluyendo costos financieros), a precios constantes y sin contingencia.


OPF= Obra Pública Financiada PIE = Productor Independiente de Energía

Debido al redondeo de cifras los totales pudieran no coincidir exactamente.

Fuente: Elaborado con información de LFC y CFE.

Por otro lado, se realizó una revisión de los compromisos de CFE por los pagos a capital de los *Proyectos de Infraestructura Productiva de Largo Plazo* (Pidiregas), para los siguientes diez años.²² Éstos se estimaron en 77,040.3 millones de pesos, cifra que supera a la presentada en el estudio prospectivo anterior (60,920 millones de pesos), debido al ingreso de nuevos proyectos durante 2001 y 2002.

Los demás rubros presentan cifras similares a las de la Prospectiva 2001-2010, con excepción de generación y transmisión, debido en parte, al escenario macroeconómico considerado en esta prospectiva. Este escenario es de 4.5% (5.2% el año pasado) y refleja con mayor precisión el crecimiento observado de la economía en los primeros dos años de la presente década y su impacto durante el periodo 2002-2011.

Fuente: Elaborado con información de CFE y LFC

²² Se refiere a las modificaciones incorporadas en 1995 a la *Ley General de Deuda Pública* (Artículo 18) y a la *Ley de Presupuesto, Contabilidad y Gasto Público Federal* (Artículo 30), las cuales permiten registrar en forma diferida las deudas contraídas mediante las diferentes modalidades de proyectos de inversión financiada, de forma tal que se registran al término de la construcción de los proyectos, y repercuten sobre los presupuestos, sólo por los pagos de las obligaciones que se efectúen durante el ejercicio fiscal correspondiente.

4.5 Opciones técnicas para la expansión del sistema de generación

El programa de expansión propuesto es resultado de una selección sistemática de los proyectos que permiten lograr el mínimo costo del suministro eléctrico, a partir de una cartera de obras posibles que cuentan con estudios de factibilidad y estimaciones de costo.

La cartera de proyectos comprende dos categorías: proyectos típicos, de capacidades y tecnologías de generación disponibles comercialmente; proyectos específicos, que requieren de un diseño especial para el aprovechamiento de los recursos primarios.

El cuadro 31 presenta las características (físicas y económicas) principales de los proyectos típicos considerados en el análisis de la expansión del SEN.

Cuadro 31 Características y datos técnicos de proyectos típicos

		Eficiencia	Vida	Factor	Usos
Central	Potencia	bruta	económica	de planta	propios
	(MW)	(%)	(años)	típico	(%)
Térmica convencional	2 X 350	37.56	30	0.750	5.8
	2 X 160	36.31	30	0.650	6.2
	2 X 84	32.42	30	0.650	6.4
	2 X 37.5	30.63	30	0.650	8.3
Turbogas¹					
Aeroderivada gas	1 X 43.7	37.26	30	0.125	2.5
Aeroderivada diesel	1 X 43.2	38.07	30	0.125	1.6
Industrial gas	1 X 85	29.83	30	0.125	1.2
Industrial gas «F»	1 X 184	33.54	30	0.125	2.0
Industrial gas «G»	1 X 250	35.18	30	0.125	2.2
Ciclo combinado gas¹	1 X 279	51.04	30	0.800	3.1
	1 X 560	51.14	30	0.800	3.1
	1 X367	51.62	30	0.800	3.1
	1 X 737	51.72	30	0.800	3.2
Diesel ²	2 X 18.7	47.61	25	0.650	5.1
	3 X 13.5	47.35	25	0.650	5.7
	3 X 3.4	43.53	25	0.650	7.1
Carboeléctrica	2 X 350	37.24	30	0.750	7.3
Dual s/desulfurador	2 X 350	37.39	30	0.750	7.3
Dual c/desulfurador	2 X 350	37.39	30	0.750	11.4
Nuclear	1 X 1,356	34.54	30	0.750	3.1

^{1/} La potencia y eficiencia están determinadas bajo las siguientes condiciones ISO: Temperatura ambiente de 15 grados centígrados, humedad relativa del 60% y presión al nivel del mar.

La realización de los proyectos típicos, con sistemas termoeléctricos de generación, requieren de un estudio previo para seleccionar el sitio de construcción y una manifestación de impacto ambiental. Cuando se tienen varias opciones para ubicar las centrales, se realiza una selección de costo mínimo (sustentado en el costo total de generación, transmisión y del combustible). El cuadro 32 indica los proyectos termoeléctricos con estudios de sitio terminados o en proceso, que podrían ser considerados por los inversionistas privados al seleccionar su ubicación definitiva.

^{2/} La potencia y eficiencia están determinadas bajo condiciones ISO 3046/1-1986: Temperatura ambiente de 25 grados centigrados, humedad relativa de 30% y presión barométrica de 1.0 bar. Fuente: Comisión Federal de Electricidad.

Cuadro 32 Proyectos termoeléctricos con estudios de sitio terminado o en proceso

	_	Número	Capacidad	_ ,	
Área	Proyecto	de	total	Estado actual	Sitio
			factible (MW)		
Baja California	CC Mexicali II (B. California I)	1 X 309	309	Estudios de caracterización en proceso	Ejido San Luis
Baja California Sur	CD Baja California Sur I	1 X 38	38	Estudios de caracterización en proceso	San Francisco
Baja California Sur	CD Baja California Sur II	1 X 38	38	Estudios de Identificación para 2003	San Francisco
Baja California Sur	CD Baja California Sur III	1 X 38	38	Estudios de Identificación para 2003	San Francisco
Baja California Sur	CD Baja California Sur IV	1 X 38	38	Estudios de Identificación para 2005	Nuevo
Baja California Sur	CD Guerrero Negro II	1 X 10	10	Sitio caracterizado	Vizcaino
Noreste	CC Altamira III y IV	1 X 1,066	1,066	Sitio caracterizado	Lomas del Real
Noreste	CC Río Bravo III	1 X 512	512	Sitio caracterizado	Anáhuac Sur
Noreste	CC Río Bravo IV	1 X 546	546	Sitio caracterizado	Anáhuac Sur II
Noreste	CC Río Bravo V	1 X 550	550	Estudios de Identificación para 2004	Nuevo
Noroeste	CC Agua Prieta II	2 X 228	469	Estudios de caracterización en proceso	El Fresnal
Noroeste	CC Agua Prieta III	2 X 228	456	Estudios de Identificación para 2004	El Fresnal
Noroeste	CC Agua Prieta IV	3 X 228	684	Estudios de Identificación para 2006	El Fresnal
Noroeste	CC Naco-Nogales	1 X 267	267	En construcción	El Fresnal
Norte	CC Samalayuca III	1 X 268	268	En construcción	Samalayuca
Norte	CC La Laguna II	1 X 464	464	Sitio caracterizado	CT Frankie, Dgo.
Occidental y Central	CK Petacalco II (ampliación)	2 X 350	700	Estudios de caracterización en proceso	CT P. Elías Calles
Occidental y Central	Carboeléctrica del Pacífico I	1 X 700	700	Estudios de Identificación para 2003	Nuevo
Occidental y Central	Carboeléctrica del Pacífico II	1 X 700	700	Estudios de Identificación para 2005	Nuevo
Occidental y Central	Carboeléctrica del Pacífico III	1 X 700	700	Estudios de Identificación para 2005	Nuevo
Occidental y Central	Carboeléctrica del Pacífico IV	1 X 1,400	1,400	Estudios de Identificación para 2007	Nuevo
Oriental y Central	CC Tuxpan V	1 X 546	546	Sitio caracterizado	Tres Estrellas
Oriental y Central	CC Tamazunchale	1 X 1,046	1,046	Estudios de Identificación en proceso	Nuevo
Peninsular	CC Valladolid III	1 X 524	524	Estudios de Identificación en proceso	Nuevo
Total		12,069			

Fuente: Comisión Federal de Electricidad.

CK = Plantas carboeléctricas

CD = Combustión interna diesel

CC = Ciclo combinado

Los proyectos específicos como los hidroeléctricos y geotermoeléctricos, requieren de un largo proceso de estudio para definir su factibilidad y decidir su construcción (cuadros 33 y 34). Este proceso se inicia con la etapa de identificación de los posibles sitios de aprovechamiento, y posteriormente se continúa con la definición y evaluación del proyecto, terminando con el diseño de las centrales generadoras.

Los estudios de los recursos hidroeléctricos y geotermoeléctricos potenciales realizados por la CFE, han identificado el conjunto de proyectos específicos que se muestran a continuación. Estos proyectos se consideran como posibles candidatos en el proceso de definición del programa de expansión, por lo que su desarrollo puede llevarse a cabo por parte de CFE, así como por particulares, bajo las modalidades permitidas por la LSPEE y su Reglamento.

Cuadro 33 Proyectos Hidroeléctricos con estudios de factibilidad terminados o en proceso

Área	Proyecto	Ubicación	No. de unidades por potencia y unidad ¹	Capacidad total ¹ (MW)	Generación media anual (GWh)	Nivel de estudio
Total				7,217.6	19,910.4	
Oriental	Nuevo Tuxpango	Veracruz	2 X 20.12	40.2	251.3	F
Oriental	Atexcaco	Puebla	3 X 40	120.0	336.1	F
Oriental	San Juan Tetelcingo	Guerrero	3 X 203	609.0	1,312.0	F
Oriental	Xúchiles	Veracruz	3 X 80	240.0	690.0	F
Oriental	Boca del Cerro (bulbo)	Tabasco/Chiapas	8 X 50	400.0	2,368.0	F
Oriental	Boca del Cerro (Kaplan)	Tabasco/Chiapas	4X 140	560.0	2,800.0	F
Central	Tepoa (bulbo)	Guerrero	2 X 35	70.0	620.1	P
Occidental	San Francisco	Jalisco	2 X 139	278.0	609.4	F
Occidental	Arroyo Hondo	Jalisco	2 X 66.5	133.0	291.5	F
Noroeste	Soyopa	Sonora	2 X 23	46.0	166.5	F
Noroeste	El Mezquite	Sonora	2 X 20	40.0	144.7	F
Noreste	PAEB Monterrey	Nuevo León	2 X 100	200.0	292.0	P
Oriental	Omitlán	Guerrero	2 X 115	230.0	788.6	F
Baja California	PAEB El Descanso	Baja California	4 X 250	1,000.0	2,087.0	P
Norte	Madera	Chihuahua	2 X 138	276.0	726.3	F
Occidental	Pozolillo	Nayarit	2 X 247	494.0	855.2	F
Oriental	Ixtayutla	Oaxaca	2 X 265	530.0	1,596.4	F
Oriental	Las Minas II	Veracruz	2 X 7.68	15.4	125.5	P
Central	La Parota	Guerrero	3 X 255	765.0	1,394.3	D
Oriental	Copainalá (bulbo) ⁴	Chiapas	5 X 46.4	232.0	572.3	D
Occidental	Mascota Corrinchis	Jalisco	1 X 37	37.0	87.0	P
Occidental	La Múcura	Jalisco	2 X 149	298.0	577.2	P
Occidental	PAEB Agua Prieta 1a. etapa	Jalisco	2 X 120	240.0	299.5	P
Occidental	La Yesca	Jalisco	2 X 182	364.0	758.5	F
Noroeste	P.R. Amata ²	Sinaloa	n.a	n.a	36.0	D
Occidental	Agua Prieta (Captaciones	Jalisco	n.a	n.a	125.0	D
	Osorio-San Andrés) ³					
		Proyectos de am	pliación de capacidad i	nstalada		
Total				785.4	958.0	
Central	Ampliación Villita ^{5 y 6}	Michoacán	2 X 78.95	157.9	109.4	F
Occidental	Ampliación Santa Rosa ⁵	Jalisco	1 X 49	49.0	74.3	F
Noroeste	Ampliación Mocúzari 5	Sonora	1 X 6.7	6.7	41.6	F
Noroeste	Ampliación Oviáchic 5	Sonora	1 X 5.8	5.8	26.3	F

Central

F = Factibilidad

P = Prefactibilidad terminada

Hidalgo

D = Diseño

2 X 283

566.0

706.4

Ampliación Zimapán⁵

n.a. = no aplica

Fuente: Comisión Federal de Electricidad.

^{1/} Potencia expresada a la salida del generador.

^{2/} Presa reguladora asociada a la C.H. Prof. Raúl J. Marsal (El Comedero). No se instalará mayor potencia. Su construcción implica el cambio en la calidad de la energía de la central (134.9 GWh) y generación adicional de 36 GWh.

^{3/} No se instalará mayor potencia. La construcción del proyecto permitirá incrementar el gasto en 0.83 m³/s, produciendo 125 GWH/año adicionales.

La generación total en la central ascenderá a 350 GWh/año.

^{4/} Considera las condiciones futuras de la C.H. Ing. Manuel Moreno Torres (Chicoasén) 2,400 MW instalados.

^{5/} La potencia y generación corresponden a la ampliación.

^{6/} La generación media anual no considera la repotenciación de la central.

Cuadro 34 Catálogo de proyectos geotermoeléctricos y eólicos

Proyecto	Ubicación	Número de	Capacidad por	Generación	Costo kWh	Nivel de
		unidades (GWh)	unidad (MW)	media anual	nivelado 1,2	estudio
Tres Vírgenes	Baja California Sur	2	5.3	79.8	0.408	(a)
La Venta (eólica)	Oaxaca	59	0.9	175.7	0.394	(b)
Los Azufres II	Michoacán	4	27.5	828.2	0.240	(a)
Cerritos Colorados 1a. Etapa	Jalisco	2	27.5	414.1	0.384	(b)
Los Humeros	Puebla	2	27.5	414.1	0.419	(b)
Total			88.7	1,271.8		

^{1/} A preciosde 2002 y tipo de cambio de 10.1 pesos por dolár.

^{2/} Incluye la inversión y las costos de operación en planta y campo, con una tasa de descuento del 10% en moneda nacional.

(a) = En construcción (b) = Con estudios de factibilidad

Fuente: Comisión Federal de Electricidad.

capítulo cinco

AHORRO DE ENERGÍA Y FUENTES RENOVABLES

5.1 Programas de ahorro de energía eléctrica

El concepto de ahorro de energía eléctrica está ligado a la conservación de los recursos energéticos no renovables, desarrollo tecnológico, protección al medio ambiente y racionalización económica en la generación eléctrica. Este concepto es considerado parte fundamental de la política energética para el desarrollo sostenido y sustentable del país.

De acuerdo con estudios elaborados por la Comisión Nacional para el Ahorro de Energía (Conae), el potencial nacional de ahorro de energía eléctrica, técnica y económicamente factible,²³ se estima en un valor cercano a 31 TWh, equivalente al 20% de las ventas totales de electricidad para el 2001.

5.1.1 Ahorro de energía por el lado de la demanda

Generalmente, la instrumentación de proyectos de ahorro de energía eléctrica por el lado de la demanda, requiere de inversiones menores que las necesarias para incrementar la oferta, presentan alta rentabilidad, mejoran el desempeño de los equipos y sistemas donde se aplican, y reducen los impactos nocivos al medio ambiente.

Con la aplicación de los programas actuales de ahorro de energía eléctrica, se estima obtener en el año 2002, un ahorro acumulado de 13,996 GWh, equivalente a 8.6% de las ventas totales de electricidad estimadas para el mismo año. El ahorro

²³ El potencial técnica y económicamente factible se define como aquel que resulta de aplicar, considerando la rentabilidad económica, todas las medidas de ahorro de energía posibles, utilizando equipos y sistemas que actualmente están en el mercado.

que se alcanzaría en el 2011, asciende a 34,021 GWh, que significaría 12.2% de las ventas totales²⁴ proyectadas al final del horizonte de estudio (cuadro 37).

Normalización

Actualmente existen 16 NOM's de eficiencia energética relacionadas con el consumo de energía eléctrica. Al año 2002, los ahorros acumulados estimados por su aplicación, son del orden de 9,120 GWh en el consumo de energía y 1,543 MW en potencia evitada (cuadro 35).

Cuadro 35 Normas Oficiales Mexicanas de eficiencia energética, 2002

				Ahorros		
Norma	Entrada	Unidades	Unidades nuevas	Total acumulado	% ^(b)) MW
	en vigor	vendidas ^(a)	GWh	GWh		
NOM-001-ENER-2000	XII/2000	2,540	7	109	13	39
NOM-004-ENER-1995	VII/1996	347,907	1	30	18	54
NOM-005-ENER-2000	X/2000	1,558,656	83	161	29	no aplica
NOM-006-ENER-1995	XI/1996	no aplica	no aplica	2,312	30	52
NOM-007-ENER-1995	IX/1996	no aplica	111	678	20	33
NOM-008-ENER-2001	VI/2001	no aplica	45	45	20	11
NOM-010-ENER-1996	I/1998	1,201	12	59	3	17
NOM-011-ENER-2002	X/2002	8,805	26	111	3	14
NOM-013-ENER-1996	V/1998	no aplica	0.4	17	2	3
NOM-014-ENER-1997	VII/1998	347,288	35	175	30	169
NOM-015-ENER-1997	VIII/1997	1,376,389	473	2,767	41	561
NOM-016-ENER-1997	VI/1998	175,749	187	1,395	7	446
NOM-017-ENER-1997	VI/1998	218,700	13	34	60	3
NOM-018-ENER-1997	X/1998	no aplica	3	68	20	6
NOM-021-ENER/SCFI/ECOL-2000	VI/2001	236,393	197	1,001	32	116
NOM-022-ENER/SCFI/ECOL-2000	VI/2001	362,650	158	158	5	19

Notas: La referencia de estas Nom's se menciona en el cuadro 4.

Con el objeto de promover el cabal cumplimiento de las normas vigentes, la Conae se coordinada con los Subcomités de Evaluación de Organismos de Certificación, Laboratorios de Prueba de la rama eléctrica-electrónica, y el de Evaluación de Unidades de Verificación de Instalaciones Eléctricas, de la Entidad Mexicana de Acreditación (ema).

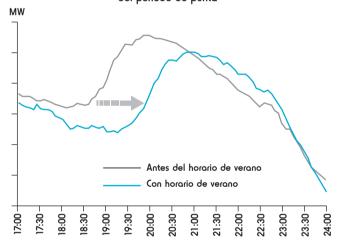
Con la aplicación efectiva de las NOM´s de eficiencia energética y la entrada en vigor de normas nuevas, se estima que para el año 2011 se alcanzarán ahorros acumulados de 25,470 GWh en el consumo de energía eléctrica y 4,720 MW de potencia evitada. Capacidad que representa 16% de la capacidad adicional del programa de expansión de CFE.

Horario de verano

El Horario de Verano consiste en adelantar el reloj una hora durante los meses de mayor insolación, con el fin de aprovechar la luz natural, y reducir el consumo de electricidad que

a) Estimaciones hechas con base en tasas de crecimiento en las ventas, proporcionadas por los fabricantes y comercializadores de los productos y sistemas cubiertos por las normas.

b) Porcentaje de mejora de la eficiencia o reducción en el consumo de energía. Fuente: CONAE,


²⁴ Este ahorro está contemplado en los escenarios esperados de energía necesaria y demanda de capacidad de la CFE.

implica la iluminación, equivalente a una hora de luz artificial por las noches, reflejando su mayor impacto en el sector doméstico.

En el mes de marzo de 2002, entró en vigor el Decreto por el que se establece que el período de aplicación del Horario de Verano, de siete meses en todo el territorio nacional: inicia el primer domingo de abril y concluye el último domingo de octubre, excepto en Sonora que no tiene horarios estacionales.

Los principales beneficios derivados de la aplicación de esta medida, son la disminución en el uso de energéticos primarios para generar electricidad y el deslizamiento de las horas de demanda máxima de electricidad a la par de una reducción en la misma.

Gráfica 25 Curva de demanda del Sistema Eléctrico comparativo del periodo de punta

El IIE y la CFE evalúan anualmente, los beneficios energéticos y ambientales alcanzados por este programa. Para el periodo 1996- 2001 se logró un ahorro de 6,262 GWh de energía y 908 MW de disminución en demanda máxima coincidente, equivalente a 9,000 millones de pesos diferidos en inversión. La reducción en el uso de combustibles es de aproximadamente 2 millones de barriles equivalentes de petróleo al año. Se espera que en el año 2011 los ahorros de energía sean del orden de 1,844 GWh y 1,003 MW de demanda evitada acumulada.

Cuadro 36 Aplicación del Horario de Verano

Año	Ahorro de energía GWh	Demanda evitada acumulada MW	Inversión diferida acumulada ^(a) millones pesos
1996	943	529	4,100
1997	1,100	550	4,400
1998	1,012	683	6,830
1999	1,092	613	6,130
2000	1,182	823	8,230
2001	933	908	9,080
2002(b)	1,058	910	9,100
2003	1,232	919	9,190
2004	1,298	929	9,290
2005	1,368	938	9,380
2006	1,437	947	9,470
2007	1,520	956	9,560
2008	1,592	967	9,670
2009	1,669	977	9,770
2010	1,750	987	9,870
2011	1,844	1,003	10,030

a) Se refiere exclusivamente a las inversiones en infraestructura diferidas por la aplicación de esta medida.

Fuente: Conae, elaborado con datos del FIDE. Comunicado 2002

Programas orientados a instalaciones productivas

Estos programas agrupan los proyectos desarrollados en instalaciones de los sectores público y privado. En este sentido, la Conae y el Fideicomiso para el Ahorro de la Energía (FIDE) promueven la realización de proyectos específicos dentro de instalaciones con consumos intensivos de energía (pequeña y mediana empresa, grandes corporativos e instalaciones de Estados y Municipios).

El Fide ofrece diversas modalidades de financiamiento para apoyar la elaboración de estudios de factibilidad, así como la instrumentación de medidas de ahorro de energía, mientras que la Conae provee asistencia técnica y elementos metodológicos para que los usuarios diseñen y desarrollen programas integrales de eficiencia energética en sus instalaciones. Para finales del año 2011 se estiman ahorros anuales de energía del orden de 1,392 GWh y de 330 MW en demanda.

h) Prelimino

Sector agropecuario

Este programa lo realiza el FIDE conjuntamente con la Comisión Nacional del Agua (Conagua), mediante programas de rehabilitación de sistemas de bombeo agrícola, y sustitución de focos incandescentes por lámparas ahorradoras en granjas avícolas.

Durante el 2001, se rehabilitaron 1,157 sistemas de bombeo agrícola (en forma acumulada suma 12,624 sistemas desde el inicio del programa); en granjas agrícolas de postura se sustituyeron 400 mil focos incandescentes por lámparas ahorradoras, alcanzándose 1.2 millones de unidades sustituidas.

El bombeo agrícola a escala nacional representa un consumo anual de 7,463 GWh, equivalente al 5% de las ventas de electricidad en el país, mientras que el potencial técnico promedio de ahorro de electricidad de la rehabilitación de pozos, es del orden del 40%. En los próximos diez años, se espera la rehabilitación de 10,000 pozos adicionales, con lo cual se obtendrán ahorros de 1,363 GWh anuales de energía eléctrica y 320 MW en demanda diferida.

Programa de incentivos Fide y desarrollo de mercado de equipos

Programa operado por el Fide tiene como objetivo principal impulsar la utilización de tecnologías ahorradoras y transformar el mercado de equipos; además, brinda financiamiento y servicios para el ahorro de energía eléctrica. A través de este programa se otorgan bonificaciones económicas a empresas industriales, comerciales y de servicios que adquieran e instalen motores eléctricos de alta eficiencia, compresores de aire eficientes, lámparas tipo T-8, balastros electrónicos y electromagnéticos.

Al cierre del 2001, se instalaron 90,978 motores eléctricos de alta eficiencia, 1,109 compresores ahorradores y 2.8 millones de equipos de alumbrado comercial e industrial. Se estima que al 2011 se alcanzarán ahorros de energía eléctrica del orden de 2,806 GWh y 478 MW en potencia evitada acumulada.

Sector doméstico

Dentro de este sector existen diversos programas para el ahorro de energía eléctrica, los cuales son operados por diversos organismos, como la Conae, el FIDE, el Programa de Ahorro Sistemático integral (ASI) y el Fideicomiso para el Programa de Ahorro de Energía Eléctrica (FIPRADEE).

Al cierre del 2001, se logró el aislamiento térmico de 74 mil viviendas, sustitución de 19,300 equipos de aire acondicionado, reemplazo de 8.6 millones de focos incandescentes por lámparas compactas fluorescentes, y la realización de más de 7,400 diagnósticos energéticos.

Para el 2002, se tiene programado el aislamiento térmico de 3,800 casas, sustitución de 8,400 equipos de aire acondicionado, instalación de un millón de lámparas eficientes, y la realización de un millón de diagnósticos energéticos. En el 2011, los ahorros anuales en consumo de energía eléctrica serán del orden de 1,013 GWh y 631 MW en demanda.

La CFE puso en marcha una estrategia para el fortalecimiento del programa de ahorro de energía en el sector doméstico a principios del 2002, principalmente en las zonas de clima cálido. Asimismo, estableció cinco subprogramas de apoyo: Aire Acondicionado, Aislamiento Térmico en Techos, Diagnósticos Energéticos, Lámparas Ahorradoras y Refrigeradores, a través de los cuales se lograrían ahorros adicionales cercanos a los 2,470 GWh/año de energía eléctrica y cerca de 700 MW en potencia evitada.

Inmuebles de la Administración Pública Federal (APF)

La Conae opera este Programa de Inmuebles de la Administración Pública Federal, con el objetivo de reducir los niveles de consumo de electricidad en edificios de uso administrativo. Este programa es obligatorio para todos los inmuebles de oficinas con superficies mayores a los mil metros cuadrados.²⁵

En el período 1999-2001, se incorporaron al programa 900 edificios, que representan 4.6 millones de metros cuadrados de oficinas administrativas. Con esta base, se analizaron anualmente sus consumos de energía y se identificó una reducción en sus índices de consumo cercano al 10%, al pasar de 104.4 a 94.1 kWh/m²-año, equivalente en 2001 a 102 GWh de energía ahorrada y 12 MW de potencia evitada. Se estima que en el año 2011 los ahorros anuales en consumo de energía eléctrica serán del orden de 133 GWh y 18 MW en demanda.

²⁵ En julio de 2002 se publicó, en el DOF, el Acuerdo que establece las disposiciones para el ahorro de energía en las oficinas públicas de la Administración Pública Federal para el ejercicio fiscal 2002.

Cuadro 37
Prospectiva de los programas actuales de ahorro de energia

	Aplicación	de NOM's	Horario d	le verano	Progra	mas en	Sector ag	ropecuario	Incentiv	os FIDE	Sector d	loméstico	Inmueble	s de la APF
					instala	aciones								
Año	Energía	Demanda	Energía	Demanda	Energía	Demanda	Energía	Demanda	Energía	Demanda	Energía	Demanda	Energía	Demanda
	GWh	evitada	GWh	evitada	GWh	evitada	GWh	evitada	GWh	evitada	GWh	evitada	GWh	evitada
		MW^a		MW^{a}		MW^{a}		$MW^{\rm a}$		MW^{a}		MW^{a}		$MW^{a} \\$
2002	9,120	1,543	1,058	910	978	233	833	199	1,417	376	476	302	114	13
2003	10,560	1,820	1,232	919	1,017	243	885	210	2,099	478	509	320	121	15
2004	12,090	2,110	1,298	929	1,067	254	938	220	2,471	478	545	339	122	15
2005	13,700	2,420	1,368	938	1,121	264	991	231	2,471	478	586	361	123	15
2006	15,390	2,740	1,437	947	1,164	275	1,043	245	2,471	478	639	395	124	16
2007	17,460	3,150	1,520	956	1,210	284	1,096	258	2,806	478	698	433	126	16
2008	19,240	3,500	1,592	967	1,254	295	1,149	272	2,806	478	765	477	128	17
2009	21,110	3,880	1,669	977	1,297	305	1,227	287	2,806	478	852	527	131	18
2010	23,090	4,270	1,750	987	1,343	317	1,289	303	2,806	478	951	584	132	18
2011	25,470	4,720	1,844	1,003	1,392	330	1,363	320	2,806	478	1,013	631	133	18

a) Suma de demanda evitada acumulada, sin considerar la aplicación de factores de coincidencia. Fuente: Comisión Nacional para el Ahorro de la Energía.

5.1.2 Ahorro de energía por el lado de la oferta

La estrategia de promoción de alternativas energéticas por el lado de la oferta, se dirige a dos áreas de acción: la cogeneración y la energía renovable. Ambas opciones incrementan la oferta energética bajo un esquema de optimización en el uso de los recursos energéticos del país. A continuación se describen las principales acciones desarrolladas para promover estas alternativas.

Cogeneración

La ventaja comparativa de la cogeneración, respecto a los sistemas convencionales de generación de energía eléctrica, es su alta eficiencia de conversión de energía, la cual se puede traducir en ahorro de combustible y, por consiguiente, en una disminución de emisiones contaminantes.

Los sistemas de cogeneración, que satisfacen al 100% los requerimientos térmicos de una planta, generalmente alcanzan eficiencias de aprovechamiento de la energía superiores al 70% y, además, proporcionan energía eléctrica excedente que puede ser vendida al suministrador, o ser consumida en otras instalaciones asociadas a estos sistemas

La Conae estima un potencial nacional de cogeneración, técnica y económicamente factible, entre un rango de 3,000 a 5,500 MW. Los factores utilizados para este cálculo consideran diversas variables, como la situación económica actual del país y el marco normativo existente en la materia

Cuadro 38
Potencial nacional de cogeneración
(Téorico vs. técnico-económico)

	Con combu	stible adicional	Sin combu	stible adicional	
		MW		MW	
Sector	Teórico	Técnico-	Teórico	Técnico-	Participación
		Económico		Económico	porcentual (%)
Industrial	5,200	1,820	9,750	3,410	62.0
Pemex Petroquímica	1,610	565	3,000	1,060	19.3
Pemex Refinación	780	275	1,470	515	9.4
Comercial	770	270	1,450	510	9.3
Total	8,360	2,930	15,670	5,495	100.0

Fuente: Comisión Nacional para el Ahorro de Energía, 2002

Con el fin de apoyar la instalación de sistemas de cogeneración en el país y superar las barreras que frenan el desarrollo de estos proyectos, en 1996 se constituyó, dentro de la Conae, La Subcomisión para promover Proyectos de Cogeneración, la cual esta integrada principalmente, por empresas privadas y organismos relacionados con la cogeneración.

Al mes de agosto de 2002, la CRE tenía registrados 31 permisos de cogeneración vigentes. De éstos, cuatro se encontraban en la etapa de construcción y 27 en operación, de los cuales 22 consumen gas natural, tres combustóleo, uno diesel y uno más energía térmica residual. Los proyectos en operación representan una capacidad total autorizada de 1,136 MW, una generación eléctrica de 5,691 GWh/año.

Una estimación conservadora de Conae sobre el desarrollo de estos sistemas de cogeneración al año 2011, supone alrededor de 2,724 MW instalados.

5.2 Fuentes renovables de energia

La energía renovable es aquella que posibilita una explotación ilimitada del recurso, en virtud de que su cantidad no se reduce a medida en que ésta se aprovecha. Por ello, se promueve una mayor diversificación en la generación de electricidad, impulsando y desarrollando tecnologías que aprovechan energía renovable, de tal forma que contribuyan al desarrollo sustentable del país.

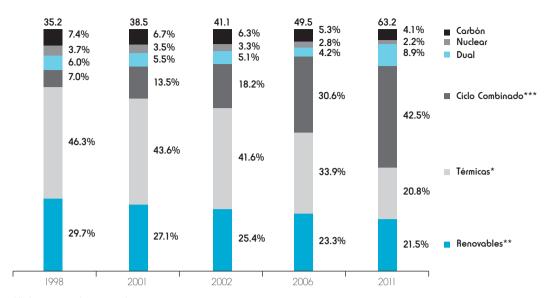
5.2.1 Principales fuentes renovables de energía en México

El uso de las energías renovables para la generación eléctrica se ve favorecido por los siguientes factores:

 Amplia disponibilidad de recursos energéticos renovables en el territorio nacional, aunque todavía no han sido suficientemente explorados ni sistemáticamente caracterizados;

- Existencia de nichos para posibles aplicaciones rentables, como es el caso de la electrificación rural, la generación distribuida²⁶ y la pequeña generación, entre otras;
- Los beneficios ambientales que ofrecen, como son el uso de recursos renovables en sustitución de combustibles fósiles, y sus bajas emisiones contaminantes;
- Varias de las tecnologías para el aprovechamiento de las energías renovables están disponibles en el mercado; algunas están ya maduras y otras en proceso de desarrollo;

La Agencia Internacional de la Energía²⁷ pronostica que el crecimiento medio anual en el uso comercial de las energías renovables será de 2.2% de aquí al año 2015 (consultar capítulo uno). Esta institución anticipa que el 20% de las necesidades energéticas mundiales estarían siendo satisfechas con energías renovables en el año 2020, mientras que países en desarrollo, el valor se ubica en cerca de 25% para el mismo año.


De acuerdo con el Consejo Mundial de la Energía, una contribución del 30% de las energías renovables al suministro energético mundial, sería una componente esencial para estabilizar al año 2020 las emisiones de CO₂ a los niveles pactados de 1990.

En México, las energías renovables maduras son la hidroelectricidad y la geotermia. En el año 2001 representaron 27.1% de la capacidad total del SEN y aportaron 17.1% de la generación total. En menor medida, se cuenta con tecnologías probadas a base de recursos eólicos y de biomasa (industria azucarera, y de celulosa y papel), cuya participación aún es marginal en el SEN, ver gráfica 26.

²⁶ Por generación distribuida se entiende la generación de electricidad en pequeñas plantas auto-contenidas, que pueden suministrar energía eléctrica a residencias, comercios e industrias. Estos generadores son de tipos muy variados, desde los que usan combustibles fósiles tradicionales (como diesel o gas natural) hasta los basados en fuentes renovables de energía (como solar y eólica.)

²⁷ World Energy Outlook, 2002. Energy Information Agency.

Gráfica 26 SEN: capacidad efectiva por tecnología (GW)

^{*/}Incluye vapor, turbogas y combustión interna.

Fuente: Comisión Federal de Electricidad

Dentro del programa de expansión de la CFE, se incluyen los proyectos hidroeléctricos de El Cajón y de Chicoasén en su segunda etapa con una capacidad conjunta de 1,686 MW (11.8% de la capacidad adicional comprometida), mientras que en el 2003 se considera la conclusión de 107 MW de capacidad instalada con centrales geotérmicas, en los Azufres.

5.2.2 Desarrollo y evolución de energía renovable en México

La CRE al mes de agosto de 2002, reporta 68 permisos para generar energía eléctrica a partir de energía renovable como energético primario, y en algunos casos, como secundario. De estos permisos, 54 están en operación, 13 en la etapa de construcción y uno por iniciar obras.

Con los instrumentos de regulación para energías renovables publicados durante el 2001, se espera que el aprovechamiento de la energía renovable en México se incremente.

Energía Solar

La principal energía renovable en el mundo, es la solar (radiación infrarroja y ultravioleta) la cual se transforma dentro de la atmósfera en diferentes efectos físicos que pueden ser empleados como un recurso energético: viento, biomasa, la diferencia de temperaturas oceánicas y la energía de las olas.

El uso de la energía solar mediante dispositivos fotovoltaicos presenta oportunidades para electrificación de zonas remotas no atendidas por la red de transmisión y distribución, o bien utilizarla como soporte de la red en regiones con fuerte demanda de punta en el verano.

El potencial de energía solar en México es uno de los más altos del mundo, aproximadamente tres cuartas partes del territorio nacional, son zonas con una insolación media del orden de los 5 kWh/m² al día.

De 1993 a 2001, la capacidad instalada de estos sistemas se incrementó de 7.1 MW a 14.3 MW, lo que representa una tasa media anual de crecimiento del 9%. Estimaciones de la Conae consideran que en el último año, se tenían más de 115 mil metros cuadrados de pequeños sistemas fotovoltaicos instalados en el país, con una generación aproximada de 8.4 GWh/año, para satisfacer pequeñas cargas distribuidas. Para el año 2011, se espera contar con 28 MW instalados y 16.5 GWh/año de generación, con base en un crecimiento anual en la instalación de los sistemas del 7% y un factor de planta del 25%.

La CFE cuenta con una planta híbrida en San Juanico, B.C.S., conformada por 17 kW fotovoltaicos, 100 kW eólicos y un motogenerador diesel de 80 kW. Además, tiene en proyecto la

^{**/}Incluye hidráulica, geotermia y eólica

^{***/}Incluye tegnologías libres

instalación de una planta híbrida (ciclo combinado – termosolar), con una capacidad termosolar de 40 a 50 MW.

Los costos de estos sistemas fotovoltaicos, son todavía muy elevados, se encuentran en un rango de 3,500 a 7,000 dólares por kW instalado, y de 25 a 150 centavos de dólar por kWh generado. Para los sistemas fototérmicos los costos correspondientes se pronostican en el rango de 2,000 a 4,000 dólares por kW y de 10 a 25 centavos de dólar por kWh.

		Costos de inversión			
Energía	Potencial estimado	dólar\$/KW instalado	centavos de dólar\$/KWh		
Solar	Insolación media	Fotovoltaicos:			
	5 KWh/m² al día.	3,500 a 7,000	25 a 150		
		Fototérmicos:			
		2,000 a 4,000	10 a 25		
Eólica	5,000 MW	1,000	5 a 11		
Minihidráulica	700 MW	800 a 6,000	3 a 45		
Biomasa	150 MW	630 a 1,170	4 а б		

Energía eólica

De las energías renovables, la eólica está considerada como una de las más prometedoras para la generación masiva de electricidad en el mediano plazo. La capacidad mundial de generación con energía eólica conectada a red actualmente rebasa los 25,000 MW²⁸, mientras que otras tecnologías, como la fotovoltaica, se instalan en cantidades superiores a los 200 MW/ año, en aplicaciones de electrificación rural y en aplicaciones conectadas a red.²⁹

Existe en el país un potencial superior a los 5,000 MW económicamente aprovechables en zonas ya identificadas: sur del Istmo de Tehuantepec (con potenciales de 2000 a 3000 MW); en las penínsulas de Baja California y Yucatán; en la región central de Zacatecas y hasta la frontera con EUA, así como en la región central del altiplano y las costas del país. Actualmente se cuenta con:

 La instalación de una máquina de 600 kW por CFE en la población de Guerrero Negro, BCS, y otra de 550 kW por la empresa Cementos Apasco, en Ramos Arizpe, Coahuila.

- La construcción de una central piloto de 1.5 MW por CFE en la Venta. Oaxaca.
- La compañía Fuerza Eólica, S.A. de C.V. fabrica y exporta generadores eléctricos de 750 kW para aerogeneradores que se producen en los Estados Unidos.

Adicionalmente existen más de 3 MW eólicos instalados en el país, a través de pequeños aerogeneradores y aerobombas de agua, que en 2001 generaron cerca de 10.6 GWh.

En la actualidad, los costos típicos de inversión en instalaciones para el aprovechamiento de la energía del viento, están alrededor de 1,000 dólares por kW instalado, y los costos de generación entre 5 y 11 centavos de dólar por kWh.

Minihidráulica

Este recurso no ha sido cuantificado en su totalidad, pero se estima que el potencial total disponible es importante. Solamente en canales de riego se estima un potencial económicamente aprovechable superior a 300 MW.

²⁸ Wind Power Monthly, mayo de 2002

 $^{^{29}}$ Added Values of Photovoltaic Power Systems. International Energy Agency, Report PVPS T1 - 09: 2001

La Conae identifica más de 100 sitios para el aprovechamiento de este recurso. En la región que comprende los estados de Veracruz y Puebla, con una generación potencial de 3,570 GWh/año, que equivale a una capacidad media de 400 MW.

Los permisos de generación minihidráulica autorizados por la CRE, indican que al cierre del año 2002 se contará con seis permisos en operación, los cuales representarán 32 MW instalados y una generación eléctrica de 120 GWh/año. Para el año 2011, se espera contar con 284 MW instalados y 1,373 GWh de generación, considerando un crecimiento anual de 5% a partir del año 2005, y un factor de planta de 49%.

Los costos de instalación de esta tecnología, varían en un rango muy amplio, de 800 a 6,000 dólares por kW instalado, con costos de generación de 3 a 45 centavos de dólar por kWh.

Biomasa

Esta tecnología emplea la materia orgánica que es susceptible de ser utilizada como energía (desechos sólidos urbanos y agropecuarios, así como maderas, follaje y residuos de los bosques). El aprovechamiento de la biomasa como energético puede realizarse vía combustión directa o mediante la conversión de la biomasa en diferentes combustibles, a través de la biodigestión anaerobia, pirólisis, gasificación o fermentación.

El Instituto de Investigaciones Eléctricas (IIE), estima que la producción de residuos sólidos municipales en el país es de 90 mil toneladas diarias, con lo que se podría soportar una capacidad de generación aproximada de 150 MW. Esta alternativa de generación puede ser ya rentable en el caso de ciudades medianas y grandes, para propósitos de autogeneración municipal.

Hasta agosto de 2002, había dos permisos autorizados por la CRE para la generación de energía eléctrica con base en la explotación de biogas de rellenos sanitarios municipales en Monterrey N.L. La capacidad instalada es de 10.8 MW y una generación de 54 GWh/año. Adicionalmente, existen 44 permisos autorizados para sistemas híbridos (combustóleo - bagazo de caña), con una capacidad total de 391 MW de capacidad y 709 GWh de generación.

Los costos de inversión asociados a estos proyectos, se encuentran en un rango de 630 a 1,170 dólares por kW instalado, la electricidad producida tiene un costo de 4 a 6 centavos de dólar por kWh generado.

Geotermia

La industria geotérmica actual está basada en la explotación de los llamados recursos geotérmicos hidrotermales, sin embargo, la viabilidad a largo plazo de este recurso energético dependerá del desarrollo de tecnología que permita el aprovechamiento de todos los tipos de recursos geotérmicos (roca seca caliente, geopresurizados, marinos y magmáticos).

La Gerencia de Proyectos Geotermoeléctricos de la CFE, ha establecido la existencia de más de 1,400 manifestaciones termales en 27 estados del país. Recientemente en algunos lugares ya se han perforado pozos exploratorios, como en Tres Vírgenes (Baja California Sur), Los Negritos (Michoacán) y Acoculco (Puebla).

El potencial geotérmico estimado de México, en sistemas hidrotermales de alta entalpía (temperaturas mayores a 180 ° C), permitiría generar cuando menos 2,400 MWe (mega watt eléctrico). Algunos investigadores han estimado de manera gruesa las reservas en sistemas hidrotermales de baja entalpía (temperaturas menores a 180 °C) en cuando menos 20,000 MWt (mega watt térmico). Aún no se cuenta con evaluaciones confiables de otros tipos de recursos geotérmicos como los geopresurizados, roca seca caliente, etc.

En el 2001 fueron instalados en el campo de Las Tres Vírgenes, las dos primeras unidades de 5 MW cada una, y próximamente se contará con 100 MW adicionales en el campo geotérmico de Los Azufres, en Michoacán.

La capacidad instalada actual de energía geotérmica es de 838 MW, en los campos de Cerro Prieto (Baja California), Los Azufres (Michoacán) y Los Humeros (Puebla), lo que representa el 2.2% de la capacidad total observada en 2001. El impacto ambiental de los desarrollos geotérmicos se puede eliminar casi completamente; y sus costos están entre 4 y 7 centavos de dólar por kWh.

5.2.3 Actividades de investigación y desarrollo en fuentes renovables

En el 2000, iniciaron las actividades que conforman el Plan Piloto para el Desarrollo de las Energías Renovables en México, auspiciado por la Secretaría de Energía y ejecutado por la Gerencia de Energías No Convencionales del Instituto de Investigaciones Eléctricas.

Dicho plan incluye los siguientes objetivos: contribuir al establecimiento de una política nacional de energía sustentable; identificar barreras para la implementación de las energías renovables; crear elementos que faciliten la implantación de las energías renovables en el país; y catalizar el desarrollo industrial de las tecnologías para su aprovechamiento.

Este plan cuenta con siete proyectos, de los cuales: tres son de energía solar; uno de energía eólica; uno de generación con biogas de relleno sanitario municipal; uno para el mapeo de los recursos geotérmicos de baja temperatura, y otro, para el desarrollo de un sistema de información geográfica de fuentes renovables en México.

Es de resaltar que con los desarrollos tecnológicos de los últimos 3 ó 4 años, y los precios actuales del gas natural, las tecnologías de gasificación de residuos de vacío ó carbón, se han vuelto competitivas con las tecnologías de gas natural y, siendo una tecnología limpia, es una opción excelente para lograr la diversificación de combustibles en el país.

El desarrollo y aplicación de las energías renovables para la generación eléctrica en México en el horizonte de los próximos diez años dependerá de la evolución de factores críticos que incluyen el desarrollo tecnológico y de mercado en el plano internacional, así como aspectos ambientales y programáticos en el plano nacional.

La siguiente tabla resume las estimaciones del IIE, sobre la capacidad que podría instalarse en el país con energías renovables en los próximos diez años. Así como, la probabilidad de que esto ocurra y los factores que podrían favorecer o dificultar su realización.

Recurso	Capacidad probable a 10 años (MW)	Nivel de probabilidad	Factores críticos para su desarrollo
Eólico	2,000	Media	Marco legal
Solar Fotovoltaico	10-20	Alta	Desarrollo del mercado
Solar Térmico	30-50	Ваја	Desarrollo tecnológico y marco legal
Biomasa	150	Alta	Ambientales
Minihidráulica	300-500	Media	Programáticos
Celdas de combustible	10-20	Media	Desarrollo tecnológico y de mercado
Geotermia Alta Entalpía (T>180 ∞C)	2,400 MWe	Alta	Mejorar competitividad en costos.
Geotermia Baja Entalpía (T<180 ∞C)	5,000 MWt	Alta	Marco legal

Fuente: Instituto de Investigaciones Eléctricas

ANEXOS

97

anexo uno

PROPUESTA DE MODERNIZACIÓN DEL SECTOR ELÉCTRICO

Exposición de motivos

La electricidad, a diferencia de otros productos energéticos, no es un recurso natural sino un bien que el hombre crea y provee dentro de las sociedades modernas para posibilitar el desarrollo de sus actividades cotidianas y el crecimiento de sus economías. Sin energía eléctrica suficiente, el crecimiento económico que ha experimentado México durante el último siglo no hubiese sido posible y sin lugar a dudas se comprometería su desarrollo futuro.

Actualmente los sectores eléctricos del mundo atraviesan por una revolución tecnológica que está modificando radicalmente su organización y operación: las empresas de electricidad, ya no actúan de manera vertical, como simples suministradores de insumos, sino que hoy en día se han transformado en empresas especializadas que ofrecen bienes y servicios personalizados.

Más aún, en un contexto en el cual el contacto de las empresas con las necesidades de los consumidores es cada día más estrecho, y los deseos de estos últimos dictan los avances en cada sector, por lo que las industrias eléctricas deben adoptar las estructuras organizacionales que les permitan satisfacer las demandas particulares de cada uno de sus clientes.

En ese sentido, México debe encaminar sus esfuerzos hacia la modernización de la estructura de su sector eléctrico y dotar a su economía de un fluido eléctrico en las mejores condiciones de calidad y precio, generado, conducido, transformado, distribuido y abastecido por empresas de calidad mundial, respondiendo a las demandas particulares de cada tipo de usuario.

Objetivos de la Reforma

Considerando las condiciones del sector eléctrico como detonador de desarrollo y desempeño económico y social, resulta indispensable crear los mecanismos adecuados para que los agentes del sector, logren mediante su participación, mejorar la calidad y los costos del servicio.

Para lograr la modernización del sector eléctrico, es necesario que las empresas e instituciones del mismo lleven a cabo su manejo, planeación y desarrollo con plena autonomía, para así responder de la mejor manera posible a las necesidades de corto, mediano y largo plazo de los usuarios y no responder a objetivos ajenos a los de la industria eléctrica.

El punto clave consiste en fortalecer a las empresas públicas, lo que implica transformarlas. El reto es que abandonen su carácter de empresas de gobierno y se conviertan en empresas de Estado. Una empresa de gobierno, usa su potencial para cubrir las necesidades del gasto corriente, mientras que una empresa de Estado, es una poderosa herramienta para garantizar la viabilidad de nuestro desarrollo económico y humano.

En ese sentido, el programa de reforma estructural desarrollado por el Gobierno Federal tiene por objeto introducir una reorganización industrial que asimile los avances alcanzados durante las últimas décadas en materia de tecnología, que a su vez generen los mecanismos e incentivos necesarios para garantizar la viabilidad de largo plazo del sector e inducir eficiencia en la prestación de los distintos servicios que hoy en día provee una industria eléctrica moderna, en particular el servicio público de energía eléctrica.

Para lograr que se lleven a cabo las inversiones necesarias en el sector eléctrico y se promueva una mejora continua en sus procesos operativos, se debe modificar su estructura organizacional actual, con el propósito de satisfacer también las necesidades de aquellos participantes cuyas necesidades particulares se encuentran fuera del servicio público, ya que de mantener un esquema donde toda la electricidad sea considerada como servicio público, se pondría en entredicho la expansión y modernización planteada, tanto por cuestiones económicas como por la falta de incentivos para inversión en el sector.

La reforma estructural propuesta pretende cumplir con los siguientes objetivos:

- Lograr el abasto de electricidad suficiente para cubrir el crecimiento de la demanda de energía eléctrica.
- Llevar a cabo una profunda modernización de la infraestructura actual para alcanzar una mayor eficiencia del sector.
- Fortalecer a las empresas públicas del sector, para que tengan un funcionamiento equiparable al de sus competidoras y puedan por lo tanto, convertirse en empresas públicas productivas.
- Disminuir la dependencia del sector en los recursos públicos.

Iniciativa de la Reforma

Modificaciones al texto constitucional

A través de los cambios propuestos a los artículos 27 y 28 de la Constitución Política de los Estados Unidos Mexicanos, se plantea reservar a la Nación en forma exclusiva la prestación del servicio público de energía eléctrica, así como permitir a los usuarios, que por sus necesidades particulares tanto económicas como de consumo, tengan la oportunidad de optar por fuentes alternas de suministro, es decir, generar por sí mismos la energía que requieren, o bien, optar por adquirirla a un tercero mediante contratos de largo plazo. Esta iniciativa tiene por objeto establecer las bases para realizar un profundo cambio estructural en la industria eléctrica nacional, con el fin de asegurar para el largo plazo un suministro de energía eléctrica suficiente, confiable, de calidad y a precios competitivos.

Para llevar a cabo lo anterior, el Ejecutivo Federal propone reformar el párrafo sexto del artículo 27 Constitucional, de la siguiente manera:

	Texto vigente	Propuesta de Reforma
Artículo 27	Art. 27, 6° párrafo:	Art. 27, 6° párrafo:
	En los casos a que se refieren Las declaratorias co-	En los casos a que se refieren Las declaratorias co-
	rrespondientes o de minerales radioactivos, Corres-	rrespondientes o de minerales radiactivos, Corres-
	ponde exclusivamente a la Nación generar, conducir,	ponde exclusivamente a la Nación la prestación del
	transformar, distribuir y abastecer energía eléctrica que	servicio público de energía eléctrica, en los términos
	tenga por objeto la prestación de servicio público. En	que establezca su ley; en esta materia no se otorgarán
	esta materia no se otorgarán concesiones a los parti-	concesiones a los particulares y la Nación aprovecha-
	culares y la Nación aprovechará los bienes y recursos	rá los bienes y recursos naturales que se requieran para
	naturales que se requieran para dichos fines.	dichos fines. Los particulares podrán generar energía
		eléctrica para consumo propio y para el estado, así
		como generar electricidad y prestar servicios a los usua-
		rios cuyo consumo rebase los mínimos previstos en
		esta ley y cumplan con los requisitos que ésta esta-
		blezca; el Estado garantizará el acceso y uso no
		discriminatorio de la Red Nacional de Transmisión y
		de las redes de distribución.

En congruencia, la iniciativa también propone modificar el cuarto párrafo del artículo 28 Constitucional, de la siguiente manera:

	Texto vigente	Propuesta de Reforma	
Artículo 28	Art. 28, 4° párrafo:	Art. 28, 4° párrafo:	
	No constituirán monopolios las funciones que el	No constituirán monopolios las funciones que el Esta-	
	Estado ejerza de manera exclusiva en las siguientes	do ejerza de manera exclusiva en las siguientes área	
	áreas estratégicas:; electricidad	estratégicas: minerales radiactivos y generación de	
		energía nuclear; servicio público de energía eléctrica y	

Modificaciones a la legislación secundaria vigente

Para hacer viable el sector eléctrico y otorgar certidumbre a los participantes, será determinante llevar a cabo reformas y adiciones legales que fortalezcan el entorno jurídico.

Por esta razón también se presentan reformas y adiciones a la Ley del Servicio Público de Energía Eléctrica vigente; la expedición de una nueva Ley Orgánica de la CFE y nueva Ley Orgánica del Centro Nacional del Control de Energía; así como reformas y adiciones a la Ley de la Comisión Reguladora de Energía, entre otras.

Desarrollo institucional

Un elemento fundamental en el proceso de reforma de la industria eléctrica es el fortalecimiento técnico, funcional y legal de las instituciones a cargo de supervisar el funcionamiento eficiente de los nuevos participantes. En este sentido, la Sener, CFE, LFC y CRE tendrán un papel importante en el desarrollo e instrumentación del cambio estructural del sector.

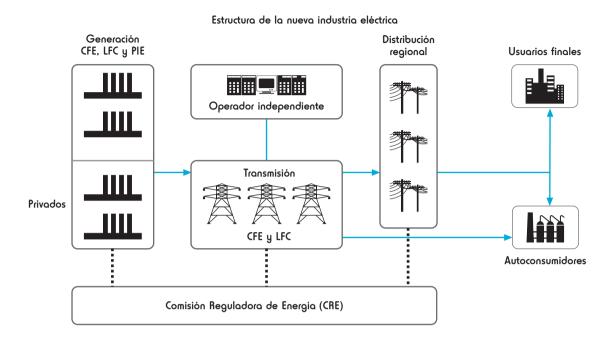
La Sener conducirá la política energética y el cambio estructural en el sector eléctrico. Además, tendrá a su cargo la planeación del Sistema Eléctrico Nacional (SEN) respecto a la expansión de la generación y la transmisión. La magnitud de estas tareas hace necesario el fortalecimiento de la estructura de la Sener y la adición del personal adecuado para su desarrollo.

Se reestructurará a CFE y LFC, para que al contar con autonomía de gestión y un régimen fiscal equiparable a cualquier empresa productiva, puedan satisfacer el servicio público de energía eléctrica con la más alta calidad y eficiencia. A su vez, la CFE, deberá contar con una separación contable de todas sus actividades. Dicha separación permitirá a la CRE llevar a cabo una regulación eficiente para garantizar un manejo transparente de la paraestatal y evitar así, subsidios cruzados y competencia desleal.

La CRE será responsable de la regulación técnica y económica del sector eléctrico. Su principal obligación será la protección de los intereses de los consumidores, tanto en el corto como en el largo plazo, teniendo entre otras facultades, expedir los términos y condiciones a que deberá sujetarse la conducción de energía eléctrica por la Red Nacional de Transmisión (RNT) y redes de distribución, así como el suministro de energía eléctrica que CFE y LFC destinen al servicio público.

Cambio estructural propuesto

La propuesta de reforma estructural del sector eléctrico busca asegurar la satisfacción de la creciente demanda de energía eléctrica, y mejorar la calidad y la confiabilidad del servicio mediante una reorganización industrial que asimile los avances tecnológicos en materia de generación y telecomunicaciones, que permita la colaboración de todos los sectores de la economía nacional.


En particular, la propuesta respeta el compromiso presidencial de no privatizar la industria eléctrica y prevé que el Estado mantenga la propiedad de los activos de CFE y de LFC. La operación y el control del Red Nacional de Transmisión (despacho eléctrico) y redes de distribución así como su mantenimiento y expansión continuarán a cargo del sector público de manera exclusiva, como también la generación nucleoeléctrica.

La estructura propuesta para la reorganización de la industria eléctrica se sujetará a los siguientes principios:

- 1. El fortalecimiento de Comisión Federal de Electricidad y de Luz y Fuerza del Centro.
- Pleno respeto a los derechos laborales consignados en la Ley Federal del Trabajo y en el Contrato Colectivo de Trabajo de los trabajadores de CFE y LFC.

- 3. La transformación del Centro Nacional del Control de Energía (Cenace) en un organismo público descentralizado de la Administración Pública Federal, que estaría encargado del despacho y del intercambio de electricidad entre los participantes.
- 4. La instrumentación y desarrollo de un marco jurídico claro y transparente, capaz de generar la certidumbre y seguridad jurídica necesarias a los inversionistas, permitiendo a la CRE, como autoridad independiente, regular los monopolios naturales de transmisión y distribución en cuanto a tarifas, inversiones y confiabilidad del servicio.
- 5. Reestructuración de las tarifas eléctricas, así como de porteo, por parte de la CRE.
- Acceso no discriminatorio a la RNT y las redes de distribución, siempre y cuando se cubran las necesidades del servicio público.
- 7. El establecimiento de un despacho de generación, a través del cual los generadores privados colocarían su capacidad no contratada para uso de los Autoconsumidores que adquieran su energía directamente del despacho de generación.
- 8. El desarrollo de contratos de largo plazo, cuyos términos serían acordados por los Autoconsumidores, posibles generadores privados, CFE y LFC.
- La introducción de Vendedores Especializados que agreguen oferta y demanda para hacer más eficiente el intercambio de energía eléctrica.
- El establecimiento de disposiciones que permitirían operar bajo condiciones especiales a los sistemas eléctricos aislados del país.
- 11. El impulso a la inversión en proyectos que promuevan el uso de fuentes de energía alternas para la generación de energía eléctrica.
- 12. La planeación de la industria eléctrica a cargo de la Sener, de acuerdo al programa propuesto por el Cenace, daría señales de transparencia y permitiría el óptimo flujo de inversiones a la RNT, así como el establecimiento de incentivos para el desarrollo eficiente y competitivo del sector.

La nueva estructura propuesta para la industria eléctrica, es la siguiente:

El servicio público de energía será suministrado exclusivamente por las empresas paraestatales y bajo aquellas plantas licitadas por el Estado. Las entidades de generación públicas, privadas o sociales ofrecerán a los Autoconsumidores y Vendedores Especializados distintas opciones para comprar electricidad, ya sea vía contratos de largo plazo o en el despacho de generación nacional. Las empresas públicas con activos de transmisión y distribución se encargarán de proveer el sistema físico por el cual se llevarán a cabo las transacciones de energía eléctrica, el cuál tendrá contraprestaciones basadas en metodologías establecidas por la CRE, debido al uso de las líneas. El Cenace se encargará del control operativo del SEN, así como la operación del despacho de generación. Finalmente las entidades con activos de distribución entregarán la energía a todos los usuarios interconectados a la red. El precio del despacho de generación considerará para su cálculo, los costos marginales de las plantas públicas, por lo que los Autoconsumidores tendrán dos opciones: optar por el despacho de generación o realizar contratos a largo plazo.

En el caso de los consumidores que reciban el fluido eléctrico como servicio público, será la CRE la que apruebe y regule las tarifas que serán cobradas a este tipo de usuarios. Los participantes en el sector

Centro Nacional del Control de la energía (Cenace). El Centro Nacional de Control de Energía, organismo descentralizado de la administración pública federal, será responsable del control operativo del Sistema Eléctrico Nacional y de la operación del despacho de generación. Este organismo garantizará el libre acceso al uso de la Red Nacional de Transmisión, además de finiquitar las transacciones financieras entre los distintos participantes.

Sus responsabilidades incluyen determinar las acciones necesarias para mantener la seguridad y estabilidad del SEN; aplicar las reglas del despacho de generación donde se determinará el precio de compra para las entidades con activos de distribución, Vendedores Especializados y Autoconsumidores; establecer y supervisar las mediciones; cobrar a los Vendedores Especializados y Autoconsumidores por la energía comprada y los servicios de transmisión, y pagar a los generadores y a las entidades que tengan activos de transmisión.

Generadores. El área de generación de la nueva industria eléctrica estará conformada por entidades propiedad de los sectores público, social y privado.

- 1. Generación Pública: Las entidades paraestatales del sector debido a su obligación de prestar el servicio público de energía eléctrica, deberán contar en todo momento, con la capacidad suficiente para generar la energía eléctrica necesaria para abastecer la demanda en la modalidad de servicio público. Esto lo pueden lograr bajo dos tipos de plantas:
 - a. Plantas propiedad de las empresas públicas productivas: Estas son las plantas que pertenecen y son operadas por las empresas públicas productivas. Estas plantas presentarán separación contable, la cuál será auditada por la CRE.
 - b. Plantas bajo el esquema PIE: Son aquellos productores de energía privada que se destina exclusivamente al servicio público bajo los términos y condiciones que prevalecen actualmente dentro de la Ley del Servicio Público de Energía Eléctrica, modificada en 1992.
- 2. Generación Privada: Este tipo de generadores podrán efectuar contratos de largo plazo con aquellos consumidores que así lo deseen, siempre y cuando estos últimos reúnan las condiciones técnicas y económicas necesarias (Autoconsumidores).
 - a. Productores Privados de Energía: Toda empresa que desee vender energía eléctrica a Autoconsumidores vía contratos bilaterales o bien dentro del despacho económico de generación.

La generación de energía eléctrica no destinada a servicio público quedará sujeta a un régimen de permisos otorgados por la CRE, una vez satisfechos los requisitos jurídicos, técnicos y financieros establecidos en la legislación y reglamentación correspondientes.

Empresas de transmisión. La transmisión se considera como la conducción de energía eléctrica a través de redes particulares o a través de la Red Nacional de Transmisión, lo cual implica la ejecución de las maniobras físicas, conservación, mantenimiento, modernización y ampliación de dicha red.

El SEN está integrado por las instalaciones destinadas a la generación, la Red Nacional de Transmisión y las redes de distribución con tensión superior a 69 kV, y su planeación estará a cargo de la Sener. El SEN es considerado estratégico y tiene por objeto mantener la integridad y estabilidad del mismo, permitiendo un acceso abierto no discriminatorio a generadores y compradores de energía para que se lleven a cabo las transacciones y el despacho de energía en ella.

Actualmente, existe la posibilidad de operar y mantener por parte de particulares, líneas de conducción de energía eléctrica para usos propios, las cuales pasarían a formar parte del SEN en caso de que una red privada sea necesaria para la expansión del mismo o bien, si el privado desea incorporar esa red privada a dicho Sistema, en cuyo caso se modificaría el punto de interconexión y se determinaría qué parte de la red privada pasaría a formar parte del SEN.

Se entiende por distribución la conducción de energía eléctrica a través de redes generales de distribución.

Empresas de distribución. Las entidades con activos de distribución estarán encargadas de transportar y suministrar la energía tanto a los usuarios de servicio público como a los Autoconsumidores (bajo un costo por la utilización de la infraestructura) que necesiten emplear su red de distribución.

Autoconsumidores. Serán considerados Autoconsumidores los usuarios que por sus necesidades particulares tanto económicas como de consumo, tendrán la oportunidad de optar por fuentes alternas de suministro, es decir, generar por sí mismos la energía que requieren, o bien, optar por adquirirla a un tercero mediante contratos de largo plazo.

Dichos usuarios serán aquellos que mediante el registro de la CRE comprueben tener requerimientos de consumo de energía eléctrica superiores a 2,500MWhora por año en actividades industriales, comerciales o de servicios.

Usuarios del servicio público. Usuarios cuyo consumo de electricidad tenga por objeto satisfacer necesidades básicas de manera continua, uniforme, regular y permanente.

Vendedores especializados. Se entiende por Vendedores Especializados a los adquirentes de energía eléctrica en el despacho de generación y/o mediante la celebración de contratos bilaterales, directamente de los generadores o mediante importación, para su venta a los Autoconsumidores, otros Vendedores Especializados o para su exportación, así como la concertación de operaciones relacionadas con la energía eléctrica realizadas entre los generadores, Autoconsumidores y Vendedores Especializados.

Los organismos prestadores del servicio público podrán tener subsidiarias que funjan como Vendedores Especializados destinados exclusivamente a ofrecer servicios de energía eléctrica a Autoconsumidores, siempre que dichas actividades no conlleven un deterioro en la prestación del servicio público, para lo cual se requerirá la previa aprobación de la Comisión Reguladora de Energía.

Importadores y exportadores. Consumidores y Vendedores Especializados de energía eléctrica que importan o exportan electricidad.

Reestructuración tarifaria

Para poder garantizar la rentabilidad del sector y generar certidumbre, tanto para los participantes del sector público como del privado, es indispensable llevar a cabo una reestructuración tarifaria. Con una estructura tarifaria que dé viabilidad y certidumbre financiera a los proyectos de la industria, se logrará atraer nuevas inversiones con tecnologías más eficientes que contribuirán de manera significativa a disminuir costos de producción del sector.

De este modo, se logrará contar con una condición primordial para la sana operación de la industria eléctrica. Cubrir el rezago tarifario propiciará contar con un campo nivelado para los diversos participantes del sector, donde paulatinamente se modernizará la planta productiva eléctrica del país, mejorando así. la calidad del suministro.

Electrificación rural. Las reformas y adiciones hechas a la Ley del Servicio Público de Energía Eléctrica dan respuesta a dos de las preocupaciones fundamentales que se han planteado en la discusión sobre la reforma del sector eléctrico: la electrificación de comunidades marginadas y los subsidios necesarios para llevar a cabo dicha electrificación. Ambos aspectos están directamente ligados con el concepto de universalidad del servicio de energía eléctrica, que es la característica principal de los servicios públicos.

La legislación propuesta establece que el Gobierno Federal, a través de la Sener, y en coordinación con las autoridades competentes de las entidades federativas y de los municipios, promoverá la electrificación de comunidades rurales y zonas urbanas marginadas, así como la formulación y ejecución de programas de apoyo a los usuarios de bajos recursos.

Los subsidios necesarios para estos casos serán transparentes y directos y se otorgarán en los casos en que socialmente se requieran. Los subsidios que otorguen los diferentes niveles del gobierno se harán llegar a los usuarios a través de las empresas públicas que proporcionen el servicio, quienes a su vez, los deberán transferir a sus destinatarios.

anexo dos

GLOSARIO DE TÉRMINOS

Adiciones de capacidad por modernización

Capacidad adicional que se obtiene en una central existente mediante mejoras en los procesos de generación o mediante la incorporación de adelantos tecnológicos.

Adiciones de capacidad por rehabilitación

Capacidad que podrá recuperarse mediante programas de reparación o sustitución de los componentes dañados en centrales cuya capacidad se ha degradado.

Capacidad

Es la potencia máxima a la cual puede suministrar energía eléctrica una unidad generadora, una central de generación o un dispositivo eléctrico, la cual es especificada por el fabricante o por el usuario, dependiendo del estado de los equipos.

Capacidad adicional comprometida

Capacidad adicional que se pondrá a disposición del Sistema Eléctrico Nacional en los próximos años, a través de fuentes de generación en proceso de construcción, licitación o ya contratadas, así como de compras firmes de capacidad, incluyendo importaciones.

Capacidad adicional no comprometida

Capacidad adicional necesaria para satisfacer la demanda futura, cuya construcción o licitación aún no se ha iniciado. De acuerdo con la LSPEE y su Reglamento, estas adiciones de capacidad podrán ser cubiertas con proyectos de generación pertenecientes a inversionistas privados o la propia CFE.

Capacidad adicional total

Suma de la capacidad comprometida y de la capacidad adicional no comprometida.

Capacidad bruta

Es igual a la capacidad efectiva de una unidad, central generadora o sistema de generación.

Capacidad efectiva

Es la capacidad de una unidad generadora que se determina tomando en cuenta las condiciones ambientales y el estado físico de las instalaciones y corresponde a la capacidad de placa corregida por efecto de degradaciones permanentes debidas al deterioro o desgaste de los equipos que forman parte de la unidad.

Capacidad existente

Capacidad de los recursos disponibles en el sistema eléctrico (centrales de generación y compras de capacidad firme entre otras) al inicio del período decenal que comprende el estudio.

Capacidad de placa

Es la capacidad definida por el fabricante en la placa de la unidad generadora o dispositivo eléctrico. Esta capacidad se obtiene generalmente cuando la unidad es relativamente nueva y opera bajo las condiciones de diseño.

Capacidad de transmisión

Es la potencia máxima que se puede transmitir a través de una línea de transmisión, tomando en cuenta restricciones técnicas de operación como: límite térmico, caída de voltaje, límite de estabilidad, etc.

Capacidad neta

Es igual a la capacidad bruta de una unidad, central generadora o sistema eléctrico, a la cual se le ha desconectado la capacidad que se requiere para los usos propios de las centrales generadoras.

Capacidad retirada

Capacidad que se pondrá fuera de servicio a lo largo del período, por terminación de la vida útil o económica de las instalaciones o por vencimiento de contratos de compra de capacidad.

Carga

Es la potencia requerida por los dispositivos de consumo y se mide en unidades de potencia eléctrica (kW, MW); cada vez que un usuario acciona un interruptor para conectar o desconectar un aparato de consumo eléctrico produce una variación en su demanda de electricidad.

Curva de carga

Gráfica que muestra la variación de la magnitud de la carga a lo largo de un periodo determinado.

Degradación

Es la reducción obligada de la capacidad de una unidad como consecuencia de la falla o deterioro de uno de sus componentes o por cualquier otra condición limitante.

Demanda

Es la potencia a la cual se debe suministrar la energía eléctrica requerida en un instante dado (demanda instantánea en MW). El valor promedio dentro de cierto intervalo es igual a la energía requerida entre el número de unidades de tiempo del intervalo (MWh/h). En CFE se mide la demanda instantánea y se lleva un registro de las demandas horarias que se presentan a lo largo del año.

Demanda base

Demanda horaria mínima dentro de cierto período. En los cuadros de la Prospectiva se indica el promedio de las demandas mínimas diarias.

Demanda máxima

Valor máximo de las demandas horarias en el año (MWh/h).

Demanda máxima coincidente

Es la demanda máxima que se presenta en un sistema eléctrico interconectado durante cierto período, la cual resulta menor que la suma de las demandas máximas de las áreas que integran el sistema ya que éstas ocurren en momentos diferentes debido a la diversidad regional y estacional de los patrones de consumo de la energía eléctrica.

Demanda máxima no coincidente

Es la suma de las demandas máximas de las áreas de un sistema eléctrico, sin considerar el tiempo en que se presentan. La demanda máxima no coincidente es mayor o igual a la demanda máxima coincidente.

Demanda media

Es igual a la energía necesaria en MWh en el año dividida entre el número de horas del año (MWh/h).

Disponibilidad

Factor que indica el porcentaje de tiempo en que una unidad generadora estuvo disponible para dar servicio, independientemente de que se haya requerido o no su operación. En CFE este índice se calcula como la relación entre la energía que la unidad pudo haber producido con la capacidad que realmente estuvo disponible a lo largo del año y la energía que la unidad produciría si estuviera disponible al 100% durante todo el año.

Energía bruta

Es la energía que debe ser suministrada por los diferentes recursos de capacidad con que cuenta el sistema eléctrico (generación propia, importación, excedentes de autoabastecedores) con el fin de abastecer la energía de las ventas, las pérdidas en la transmisión, los usos propios de las centrales y la energía de exportación.

Energía neta

Es la energía total entregada a la red y es igual a la generación neta de las centrales del sistema más la energía de importaciones de otros sistemas eléctricos, más la energía adquirida de excedentes de autoabastecedores y cogeneradores.

Factor de carga

Es la relación entre la demanda media y el valor de la demanda máxima registradas en un período determinado. El factor de carga se acerca a la unidad a medida que la curva de carga es más plana.

Factor de diversidad

Es la relación entre la suma de las demandas máximas individuales de dos o más cargas y la demanda máxima del conjunto. Un factor mayor a uno significa que las demandas máximas no ocurren simultáneamente.

Factor de planta

Indica el grado en que fue utilizada la capacidad de las unidades generadoras y se calcula como la relación entre la carga promedio de la unidad durante el período y su capacidad efectiva. Este índice puede ser menor o igual al factor de disponibilidad pero nunca mayor.

En las unidades de carga base el factor de planta es cercano al factor de disponibilidad, mientras que en las unidades de carga pico el factor de planta puede ser mucho menor que el factor de disponibilidad.

Gas dulce

Gas natural que sale libre de gases ácidos de algunos yacimientos de gas no asociado, o que ha sido tratado en plantas endulzadoras.

Gas natural

Mezcla de hidrocarburos constituida principalmente por metano que se encuentra en los yacimientos en solución o en fase gaseosa con el crudo, o bien en yacimientos que no contienen aceite.

Generación bruta

Es la energía que se produce en las centrales eléctricas, medida en las terminales de los generadores. Una parte pequeña de esta energía es utilizada para alimentar los equipos auxiliares de la propia central (usos propios) y el resto es entregado a la red de transmisión (generación neta).

Generación neta

Es la energía eléctrica que una central generadora entrega a la red de transmisión y es igual a la generación bruta menos la energía utilizada en los usos propios de la central.

Impedancia

Resistencia aparente de un circuito al flujo de la corriente alterna, equivalente a la resistencia efectiva cuando la corriente es continua.

Indisponibilidad

Factor que indica el porcentaje de tiempo en que una unidad generadora estuvo indisponible para dar servicio, independientemente de que haya requerido o no su operación. Las causas de indisponibilidad son:

- a) Salidas para mantenimiento
- b) Salidas por fallas
- c) Degradaciones de capacidad
- d) Desconexiones por causas ajenas

Indisponibilidad por causas ajenas

Factor que indica el porcentaje de tiempo en que la unidad estuvo indisponible a causa de la ocurrencia de algún evento o disturbio ajeno a la central, como: falla en las líneas de transmisión, fenómenos naturales, falta de combustible. etcétera.

Indisponibilidad por degradación

Factor que indica el porcentaje de tiempo en que la unidad o central generadora disminuyó su potencia máxima, sin salir de línea, por problemas de funcionamiento en algunos de sus componentes.

Indisponibilidad por fallas

Factor que indica el porcentaje de tiempo en que la unidad o central generadora estuvo indisponible, debido a la salida total de una unidad generadora, por la ocurrencia de fallas en los equipos de la central.

Indisponibilidad por mantenimiento

Factor que indica el porcentaje de tiempo en que la unidad estuvo indisponible debido a las salidas para realizar los trabajos propios de conservación del equipo principal.

Margen de reserva

Diferencia entre la capacidad bruta y la demanda máxima coincidente de un sistema eléctrico, expresada en porcentaje de la demanda máxima coincidente.

Margen de reserva operativo

Diferencia entre la capacidad disponible y la demanda máxima coincidente de un sistema eléctrico, expresada en porcentaje de la demanda máxima coincidente. Donde la capacidad disponible es igual a la capacidad efectiva del sistema, menos la capacidad fuera de servicio por mantenimiento, falla, degradación y causas ajenas.

Margen de reserva = Capacidad efectiva bruta - Demanda máxima bruta coincidente x 100%

Demanda máxima bruta coincidente

Margen de reserva operativo = Capacidad efectiva bruta disponible – Demanda máxima bruta coincidente x 100%

Demanda máxima bruta coincidente

Donde:

Capacidad efectiva bruta disponible = Capacidad efectiva bruta – capacidad indisponible por mantenimiento, falla, degradación o causas ajenas.

Los valores mínimos adoptados para la planeación del Sistema Interconectado (SI) y del área noreste, son los siguientes:

Margen de reserva = 27% Margen de reserva operatorio = 6%

Estos niveles se consideran adecuados cuando no hay restricciones en la red de transmisión.

Para el área Baja California se adopta como valor mínimo de capacidad de reserva, después de descontar la capacidad indisponible por mantenimiento, lo que sea mayor de: a) La capacidad de la unidad mayor ó b) 15% de la demanda máxima.

Para el área Baja California Sur se adopta como valor mínimo de capacidad de reserva, el total de la capacidad de las dos unidades mayores.

Pérdidas

Término aplicado a la energía (MWh) o a la potencia eléctrica (MW), que se pierde en los procesos de transmisión y distribución. Las pérdidas se deben principalmente a la transformación de una parte de la energía eléctrica en calor disipado en los conductores o aparatos.

Permisionarios

Los titulares de permisos de generación, exportación o importación de energía eléctrica.

Red

Conjunto de elementos interconectados.

Sincronismo

Es la forma en que todos los generadores conectados a una red de corriente alterna deben mantenerse operando para garantizar una operación estable del sistema eléctrico. En esta forma de operación, la velocidad eléctrica de cada generador (velocidad angular del rotor por el número de pares de polos) se mantiene igual a la frecuencia angular del voltaje de la red en el punto de conexión.

Sistema mallado

Un sistema eléctrico se considera fuertemente mallado cuando las subestaciones que lo integran están conectadas entre sí mediante múltiples enlaces, lo que permite preservar la operación estable del sistema ante la desconexión súbita de algunos de sus elementos.

Suministrador

Comisión Federal de Electricidad y/o Luz y Fuerza del Centro.

anexo tres

ABREVIATURAS

CAT Construcción Arrendamiento-Transferencia.
CEMEX Cementos Mexicanos.

CEIVIEX Cementos Mexicanos.

CENACE Centro Nacional de Control de Energía.

CFE Comisión Federal de Electricidad.

CONAE Comisión Nacional para el Ahorro de Energía.

COPAR Costos y Parámetros de Referencia.

CRE Comisión Reguladora de Energía.

DOF Diario Oficial de la Federación.

EPE El Paso Electric Company.

EUA Estados Unidos de América.

LFC Luz y Fuerza del Centro.

LSPEE Ley del Servicio Público de Energía Eléctrica.

OCDE Organización para la Cooperación del Desarrollo Económico.

OLADE Organización Latinoamericana de Energía.

OPF Obra Pública Financiada.

PIE Producción Independiente de Energía.

PEMEX Petróleos Mexicanos.

PIDIREGAS Proyectos de Impacto Diferido en el Registro del Gasto Público.

PLANADE Plan Nacional de Desarrollo.

PRONAFIDE Programa Nacional de Financiamiento del Desarrollo.

SENER Secretaría de Energía.

SEN Sistema Eléctrico Nacional.

UPI Unidad de Promoción de Inversiones.WSCC Western Systems Coordinating Council.

115

anexo cuatro

DOCUMENTOS BASE PARA LA ELABORACIÓN DE LA PROSPECTIVA

Desarrollo del mercado eléctrico 1997-2011. Comisión Federal de Electricidad. México, D.F., 2002.

El estudio del desarrollo del mercado eléctrico es una actividad fundamental que la CFE realiza para actualizar sus programas de expansión y para otras aplicaciones relacionadas con el programa a 10 años del sector eléctrico. El estudio se enfoca a obtener estimaciones de la potencia y la energía que se requerirá suministrar en el próximo decenio.

Costos y Parámetros de Referencia para la Formulación de Proyectos en el Sector Eléctrico "Copar" (tomos de generación, transmisión y transformación).

Comisión Federal de Electricidad.

México D.F., 2001.

Información básica para evaluar financiera y económicamente los proyectos del sector eléctrico. Identifica elementos comunes en proyectos de tecnologías y tamaños típicos, lo cual permite definir una base de costos y parámetros de referencia que deberá ser complementada para tomar en cuenta los aspectos individuales de cada proyecto.

Modelos econométricos sectoriales para la proyección del mercado eléctrico 2002-2011.

Comisión Federal de Electricidad.

México D.F., 2000.

Modelos econométricos que vinculan la evolución de la demanda y las ventas sectoriales con indicadores de la actividad económica, demográfica y con los precios de los energéticos utilizados en la generación eléctrica.

*Informe anual 2001.*Comisión Federal de Electricidad.
México D.F., 2002.

Este documento es un resumen de las actividades realizadas a lo largo del año, donde se exponen los avances obtenidos en materia financiera, de construcción, capacidad instalada, generación de electricidad, transmisión, distribución, comercialización, protección ambiental y ahorro de energía, entre otros.

117

anexo cinco

REFERENCIAS PARA LA RECEPCIÓN DE COMENTARIOS

Los particulares interesados en aportar comentarios, realizar observaciones o formular consultas pueden dirigirse a:

Subsecretaría de Política Energética y Desarrollo Tecnológico Secretaría de Energía Insurgentes Sur 890, piso 3, Col. del Valle

México D.F. 03100

Tel: 54 48 62 23 y 54 48 60 22

Fax: 54 48 62 23

Coordinador de la publicación:

Dirección General de Formulación de Política Energética Subsecretaría de Política Energética y Desarrollo Tecnológico

Tel: 54 48 60 22 Fax: 54 48 62 23

E-mail: ajimenez@energia.gob.mx

A fin de precisar la información sobre las alternativas de inversión para los particulares interesados en el sector, favor de dirigirse a:

Unidad de Promoción de Inversiones Secretaría de Energía Tel: 54 48 60 56 / 54 48 60 57

Fax: 54 48 62 45

E-mail: falonso@energia.gob.mx

Direcciones electrónicas nacionales de interés, que puede consultar:

www.energia.gob.mx Secretaría de Energía

www.cfe.gob.mx Comisión Federal de Electricidad

www.lfc.gob.mx Luz y Fuerza del Centro www.pemex.gob.mx Petróleos Mexicanos

www.conae.gob.mx Comisión Nacional para el Ahorro de la Energía

www.cre.gob.mx Comisión Reguladora de Energía
www.fide.org.mx Fideicomiso para el Ahorro de Energía
www.iie.org.mx Instituto de Investigaciones Eléctricas
www.imp.mx Instituto Mexicano del Petróleo

www.inin.mx Instituto de Investigaciones Nucleares

www.cnsns.gob.mx Comisión Nacional de Seguridad Nuclear y Salvaguardias

Acciones de mejora continua

La Secretaría de Energía está comprometida con el sistema de calidad total y mejora continua. En el presente año se certificarán los procesos involucrados en la elaboración de las Prospectivas del sector energético, para dar cumplimiento a los estándares de calidad que dicta la norma ISO 9001:2000, de reconocimiento internacional. Adicionalmente, este año se llevó a cabo un estudio mercadológico para conocer las necesidades de los usuarios de las Prospectivas.

Las Prospectivas formuladas son un instrumento de planeación y de definición de políticas energéticas que contribuyen a identificar las necesidades futuras de inversión en el sector y el impacto de un posible rezago en la toma de decisiones. Las Prospectivas se han integrado a los procesos de planeación de las empresas del sector y se han posicionado en el mercado como documentos de consulta obligada para los usuarios interesados en el sector de energía de México.

Entre los usuarios más frecuentes de las mismas destacan las dependencias paraestatales, los funcionarios del sector, el poder legislativo, consultorías, empresas privadas y públicas, así como inversionistas internacionales y organismos mundiales de energía e investigadores y académicos de los centros de investigación y docencia.

Este año se hizo un esfuerzo para mejorar la calidad de los documentos al contar con fuentes de información más detalladas y oportunas. Además, se revisaron las metodologías utilizadas en los pronósticos de demanda y oferta y se hizo un análisis más preciso sobre los patrones de consumo de los diferentes sectores y regiones del país.

Es relevante mencionar que con motivo de cumplir con los objetivos de calidad de la presente administración, el presente año se certificarán los procesos relacionados con la elaboración de dichas prospectivas con apego a la norma ISO 9001:2000. Esto es prueba del esfuerzo que se realiza en la Secretaría por mejorar continuamente la información contenida en estos estudios.

Adicionalmente a este esfuerzo, por primera ocasión desde la publicación de estos trabajos, se realizó un estudio mercadológico de las prospectivas cuyo objetivo fue identificar las necesidades de información de los usuarios a fin de mejorar su contenido, estructura y presentación. El estudio consistió en consultas directas con los usuarios de las prospectivas, análisis con expertos en mercadotecnia, cuestionarios de opinión y sesiones de grupo (focus group).

Se aplicaron cuestionarios de opinión a usuarios de diversas organizaciones y entidades relacionadas con el sector energético. El 64% de los encuestados consideró que el contenido de las Prospectivas es bueno, mientras que el 36% restante opinó que es excelente. Las Prospectivas más consultadas son la de gas natural (84%), electricidad (80%), gas LP (60%) y petrolíferos (51%). Los entrevistados opinaron que el contenido de mayor valor agregado de las prospectivas fue el referente a las estadísticas y gráficos con 42% de los encuestados. La mayoría de los encuestados coincidieron que las proyecciones que se han publicado en estos documentos, han sido bastante acertadas y que las Prospectivas son documentos valiosos que cuentan con reconocimiento general. Dicha consulta está a disposición de los interesados.

Francisco Barnés de Castro Subsecretario de Política Energética y Desarrollo Tecnológico